36 resultados para Monte-Carlo analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR2/(D) over bar (g), with CNR being the contrast-to-noise ratio in image and (D) over bar (g) being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm <= t <= 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t >= 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 mu m of the Mo filter at 24-25 kVp, while 60 mu m of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV. which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when lhe manufacturer parameters of lhe detector were used in lhe simulation. A complete Computerized Tomagraphy (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.
Resumo:
The use of numerical simulation in the design and evaluation of products performance is ever increasing. To a greater extent, such estimates are needed in a early design stage, when physical prototypes are not available. When dealing with vibro-acoustic models, known to be computationally expensive, a question remains, which is related to the accuracy of such models in view of the well-know variability inherent to the mass manufacturing production techniques. In addition, both academia and industry have recently realized the importance of actually listening to a products sound, either by measurements or by virtual sound synthesis, in order to assess its performance. In this work, the scatter of significant parameter variations on a simplified vehicle vibro-acoustic model is calculated on loudness metrics using Monte Carlo analysis. The mapping from the system parameters to sound quality metric is performed by a fully-coupled vibro-acoustic finite element model. Different loudness metrics are used, including overall sound pressure level expressed in dB and Specific Loudness in Sones. Sound quality equivalent sources are used to excite this model and the sound pressure level at the driver's head position is acquired to be evaluated according to sound quality metrics. No significant variation has been perceived when evaluating the system using regular sound pressure level expressed in in dB and dB(A). This happens because of the third-octave filters that averages the results under some frequency bands. On the other hand, Zwicker Loudness presents important variations, arguably, due to the masking effects.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
We have done a new analysis of the available observations of the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the occurrence of aliases and the additional bodies-the planets f and g-announced in Vogt et al. (Astrophys J 723:954-965, 2010). Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the habitable zone (HZ) of the star GJ581. This region, for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period a parts per thousand 450 days, but we are judicious about any affirmation concerning this body because its signal is in the threshold of detection and the high period is in a spectral region where the occurrence of aliases is very common. Besides, we outline some dynamical features of the HZ with the dynamical map and point out the role played by some resonances laying there.
Resumo:
Electronic polarization induced by the interaction of a reference molecule with a liquid environment is expected to affect the magnetic shielding constants. Understanding this effect using realistic theoretical models is important for proper use of nuclear magnetic resonance in molecular characterization. In this work, we consider the pyridine molecule in water as a model system to briefly investigate this aspect. Thus, Monte Carlo simulations and quantum mechanics calculations based on the B3LYP/6-311++G (d,p) are used to analyze different aspects of the solvent effects on the N-15 magnetic shielding constant of pyridine in water. This includes in special the geometry relaxation and the electronic polarization of the solute by the solvent. The polarization effect is found to be very important, but, as expected for pyridine, the geometry relaxation contribution is essentially negligible. Using an average electrostatic model of the solvent, the magnetic shielding constant is calculated as -58.7 ppm, in good agreement with the experimental value of -56.3 ppm. The explicit inclusion of hydrogen-bonded water molecules embedded in the electrostatic field of the remaining solvent molecules gives the value of -61.8 ppm.
Resumo:
Abstract Background The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. Findings For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. Conclusions For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.
Resumo:
The oregano is a plant, rich in essential oil and very used as spice in the preparation of foods. The objective of this paper was to analyze the viability of irrigation for oregano in Presidente Prudente, São Paulo state, Brazil, including economic risk factors, their effect on irrigation total cost, as well as the different pumping kinds. The Monte Carlo simulation was utilized to study the economic factors: fixed cost, labor, maintenance, pumping and water. The use of irrigation for the oregano in the region of Presidente Prudente is indicated because of its economic feasibility and the reduced risks. The average values of the benefit/cost for all water depths tested were higher than 1, indicating viability. The use of irrigation promoted lower risks compared to the non irrigated crop. The micro irrigation system presented greater sensitivity to changes of prices of the equipment associated to the variation of the useful life of the system. The oregano selling price was the most important factor involved in annual net profit. The water cost was the factor of lesser influence on the total cost. Due to the characteristic of high drip irrigation frequency there was no difference between the tariffs based in use hour of electric energy classified as green and blue, which are characterized by applying different rates on the energy consumption and demand according to the hours of day and times of the year. For the studied region it was recommended drip irrigation water management of oregano with the daily application of 100% of pan evaporation Class A using electric motor with tariffs blue or green.
Resumo:
In this paper we propose a hybrid hazard regression model with threshold stress which includes the proportional hazards and the accelerated failure time models as particular cases. To express the behavior of lifetimes the generalized-gamma distribution is assumed and an inverse power law model with a threshold stress is considered. For parameter estimation we develop a sampling-based posterior inference procedure based on Markov Chain Monte Carlo techniques. We assume proper but vague priors for the parameters of interest. A simulation study investigates the frequentist properties of the proposed estimators obtained under the assumption of vague priors. Further, some discussions on model selection criteria are given. The methodology is illustrated on simulated and real lifetime data set.
Resumo:
Hepatitis C virus (HCV) is a public health problem throughout the world and 3% of the world population is infected with this virus. It is estimated that 3-4 millions individuals are being infected every year. It has been estimated that around 1.5% of Brazilian population is anti-HCV positive and the Northeast region showed the highest prevalence in Brazil. The aim of this study was to characterize HCV genotypes circulating in Pernambuco State (PE), Brazil, located in the Northeast region of the country. This study included 85 anti-HCV positive patients followed up between 2004 and 2011. For genotyping, a 380bp fragment of HCV RNA in the NS5B region was amplified by nested PCR. Phylogenetic analysis was conducted using Bayesian Markov chain Monte Carlo simulation (MCMC) using BEAST v.1.5.3. From 85 samples, 63 (74.1%) positive to NS5B fragment were successfully sequenced. Subtype 1b was the most prevalent in this population (42-66.7%), followed by 3a (16-25.4%), 1a (4-6.3%) and 2b (1-1.6%). Twelve (63.1%) and seven (36.9%) patients with HCV and schistosomiasis were infected with subtypes 1b and 3a, respectively. Brazil is a large country with many different population backgrounds; a large variation in the frequencies of HCV genotypes is predictable throughout its territory. This study reports HCV genotypes from Pernambuco State where subtype 1b was found to be the most prevalent. Phylogenetic analysis suggests the presence of the different HCV strains circulating within this population. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.
Resumo:
Two versions of the threshold contact process ordinary and conservative - are studied on a square lattice. In the first, particles are created on active sites, those having at least two nearest neighbor sites occupied, and are annihilated spontaneously. In the conservative version, a particle jumps from its site to an active site. Mean-field analysis suggests the existence of a first-order phase transition, which is confirmed by Monte Carlo simulations. In the thermodynamic limit, the two versions are found to give the same results. (C) 2012 Elsevier B.V. All rights reserved.