53 resultados para Microalgae. Biofuel. Photobioreactor. Transesterification

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgae are a promising source of raw material for biodiesel production. This review discusses the latest developments related to the application of microalgae biomass for biodiesel production. Characterization of fatty acid of microalgae and comparisons with other sources of raw materials and processes are presented. Furthermore, technological perspectives and approaches for growing microalgae in photobioreactors, microalgal oil extraction techniques, and procedures for synthesizing biodiesel are reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Fed-batch culture allows the cultivation of Arthrospira platensis using urea as nitrogen source. Tubular photobioreactors substantially increase cell growth, but the successful use of this cheap nitrogen source requires a knowledge of the kinetic and thermodynamic parameters of the process. This work aims at identifying the effect of two independent variables, temperature (T) and urea daily molar flow-rate (U), on cell growth, biomass composition and thermodynamic parameters involved in this photosynthetic cultivation. RESULTS: The optimal values obtained were T = 32 degrees C and U = 1.16 mmol L-1 d-1, under which the maximum cell concentration was 4186 +/- 39 mg L-1, cell productivity 541 +/- 5 mg L-1 d-1 and yield of biomass on nitrogen 14.3 +/- 0.1 mg mg-1. Applying an Arrhenius-type approach, the thermodynamic parameters of growth (?H* = 98.2 kJ mol-1; ?S* = - 0.020 kJ mol-1 K-1; ?G* = 104.1 kJ mol-1) and its thermal inactivation (Delta H-D(0) =168.9 kJ mol-1; Delta S-D(0) = 0.459 kJ mol-1 K-1; Delta G(D)(0) =31.98 kJ mol-1) were estimated. CONCLUSIONS: To maximize cell growth T and U were simultaneously optimized. Biomass lipid content was not influenced by the experimental conditions, while protein content was dependent on both independent variables. Using urea as nitrogen source prevented the inhibitory effect already observed with ammonium salts. Copyright (c) 2012 Society of Chemical Industry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyanobacterium Microcystis aeruginosa strain NPCD-1, isolated from sewage treatment plant and characterized as a non-microcystin producer by mass spectrometry and molecular analysis, was found to be a source of lipid when cultivated in ASM-1 medium at 25 degrees C under constant white fluorescent illumination (109 mu mol photon m(-2) s(-1)). In these conditions, biomass productivity of 46.92 +/- 3.84 mg L-1 day(-1) and lipid content of 28.10 +/- 1.47% were obtained. Quantitative analysis of fatty acid methyl esters demonstrated high concentration of saturated fatty acids (50%), palmitic (24.34%) and lauric (13.21%) acids being the major components. The remaining 50% constituting unsaturated fatty acids showed higher concentrations of oleic (26.88%) and linoleic (12.53%) acids. The feasibility to produce biodiesel from this cyanobacterial lipid was demonstrated by running enzymatic transesterification reactions catalyzed by Novozym (R) 435 and using palm oil as feedstock control. Batch experiments were carried out using tert-butanol and iso-octane as solvent. Results showed similarity on the main ethyl esters formed for both feedstocks. The highest ethyl ester concentration was related to palmitate and oleate esters followed by laurate and linoleate esters. However, both reaction rates and ester yields were dependent on the solvent tested. Total ethyl ester concentrations varied in the range of 44.24-67.84 wt%, corresponding to ester yields from 80 to 100%. Iso-octane provided better solubility and miscibility, with ester yield of 98.10% obtained at 48 h for reaction using the cyanobacterium lipid, while full conversion was achieved in 12 h for reaction carried out with palm oil. These results demonstrated that cyanobacterial lipids from M. aeruginosa NPCD-1 have interesting properties for biofuel production. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed at evaluating the production of Arthrospira platensis in tubular photobioreactor using CO2 from ethanol fermentation. The results of these cultivations were compared to those obtained using CO2 from cylinder at different protocols of simultaneous ammonium sulfate and sodium nitrate feeding. Maximum cell concentration (X-m), cell productivity (P-x), nitrogen-to-cell conversion factor (Y-X/N), and biomass composition (total lipids and proteins) were selected as responses and evaluated by analysis of variance. The source of CO2 did not exert any significant statistical influence on these responses, which means that the flue gas from ethanol fermentation could successfully be used as a carbon source as well as to control the medium pH, thus contributing to reduce the greenhouse effect. The results taken as a whole demonstrated that the best combination of responses mean values (X-m = 4.543 g L-1; P-x = 0.460 g L-1 d(-1); Y-X/N = 15.6 g g(-1); total lipids = 8.39%; total proteins = 18.7%) was obtained using as nitrogen source a mixture of 25% NaNO3 and 75% (NH4)(2)SO4, both expressed as nitrogen. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arthrospira platensis was cultivated in tubular photobioreactor in order to evaluate growth and biomass production at variable photosynthetic photon flux density (PPFD?=?60, 120, and 240?mu mol photons m-2?s-1) and employing three different systems for cell circulation, specifically an airlift, a motor-driven pumping and a pressurized system. The influence of these two independents variables on the maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion factor (YX/N), photosynthetic efficiency (PE), and biomass composition (total lipids and proteins), taken as responses, was evaluated by analysis of variance. The statistical analysis revealed that the best combination of responses' mean values (Xm?=?4,055?mg?L-1, Px?=?406?mg?L-1?day-1, YX/N?=?5.07?mg?mg-1, total lipids?=?8.94%, total proteins?=?30.3%, PE?=?2.04%) was obtained at PPFD?=?120?mu mol photons m-2?s-1; therefore, this light intensity should be considered as the most well-suited for A. platensis cultivation in this photobioreactor configuration. The airlift system did not exert any significant positive statistical influence on the responses, which suggests that this traditional cell circulation system could successfully be substituted by the others tested in this work. Biotechnol. Bioeng. 2012; 109:444450. (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The screening. biomass growth of lipase-producing fungus isolated from different sources and available at URM (University Recife Mycologia). as well as, the immobilization and utilization of the whole cells for the transesterification of babassu oil were investigated. Rhizopus oryzae (URM 3231, 4692), Mucor circinelloides (URM 4140, 4182) and Penicillium citrinum URM 4216 were considered to be good intracellular lipase producers whereas those from Mucor hiemalis URM 4144 and Mucor piriformis URM 4145 were weaker. Fungi biomass containing high lipase activities was immobilized on different biomass support particles (BSPs) and with the exception of Penicillium citrinum URM 4216 all the other fungi strains exhibited high lipase activity (20-50 Ug(-1)) when immobilized in situ using polyurethane foam particles. Transesterification activities of the immobilized whole cells were evaluated in the ethanolysis reaction with babassu oil and the highest performance was attained by M. circinelloides URM 4182 giving 83.22 +/- 3.68% ester yield in less than 96 h reaction. The biocatalyst operational stability was also assessed and an inactivation profile was found to follow the Arrhenius model, revealing values of 26 days and 2.6 x 10(-2)day(-1), for half-life and a deactivation coefficient, respectively. The purified product (biodiesel) exhibited viscosity (6.63 cSt) close to the value to attend specifications by the ASTM 06751 to be used as biofuel. Results are favorable compared with data already reported in the literature and demonstrated that M. circinelloides URM 4182 whole cells is a cheaper biocatalyst that can be used in the biodiesel synthesis. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Arthrospira platensis has been studied for single-cell protein production because of its biomass composition and its ability of growing in alternative media. This work evaluated the effects of different dilution rates (D) and urea concentrations (N0) on A.similar to platensis continuous culture, in terms of growth, kinetic parameters, biomass composition and nitrogen removal. Methods and results: Arthrospira platensis was continuously cultivated in a glass-made vertical column photobioreactor agitated with Rushton turbines. There were used different dilution rates (0.040.44 day-1) and urea concentrations (0.5 and 5 mmol l-1). With N0 = 5 mmol l-1, the maximum steady-state biomass concentration was1415 mg l-1, achieved with D = 0.04 day-1, but the highest protein content (71.9%) was obtained by applying D = 0.12 day-1, attaining a protein productivity of 106.41 mg l-1 day-1. Nitrogen removal reached 99% on steady-state conditions. Conclusions: The best results were achieved by applying N0 = 5 mmol l-1; however, urea led to inhibitory conditions at D = 0.16 day-1, inducing the system wash-out. The agitation afforded satisfactory mixture and did not harm the trichomes structure. Significance and Impact of the Study: These results can enhance the basis for the continuous removal of nitrogenous wastewater pollutants using cyanobacteria, with an easily assembled photobioreactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Exposure to fine fractions of particulate matter (PM2.5) is associated with increased hospital admissions and mortality for respiratory and cardiovascular disease in children and the elderly. This study aims to estimate the toxicological risk of PM2.5 from biomass burning in children and adolescents between the age of 6 and 14 in Tangara da Serra, a municipality of Subequatorial Brazilian Amazon. Methods: Risk assessment methodology was applied to estimate the risk quotient in two scenarios of exposure according to local seasonality. The potential dose of PM2.5 was estimated using the Monte Carlo simulation, stratifying the population by age, gender, asthma and Body Mass Index (BMI). Results: Male asthmatic children under the age of 8 at normal body rate had the highest risk quotient among the subgroups. The general potential average dose of PM2.5 was 1.95 mu g/kg.day (95% CI: 1.62 - 2.27) during the dry scenario and 0.32 mu g/kg. day (95% CI: 0.29 - 0.34) in the rainy scenario. During the dry season, children and adolescents showed a toxicological risk to PM2.5 of 2.07 mu g/kg. day (95% CI: 1.85 - 2.30). Conclusions: Children and adolescents living in the Subequatorial Brazilian Amazon region were exposed to high levels of PM2.5 resulting in toxicological risk for this multi-pollutant. The toxicological risk quotients of children in this region were comparable or higher to children living in metropolitan regions with PM2.5 air pollution above the recommended limits to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of microalgae and cyanobacteria for the production of biofuels and other raw materials is considered a very promising sustainable technology due to the high areal productivity, potential for CO2 fixation and use of non-arable land. The production of oil by microalgae in a large scale plant was studied using emergy analysis. The joint transformity calculated for the base scenario was 1.32E + 5 sej/J, the oil transformity was 3.51E + 5 sej/J, the emergy yield ratio (EYR) was 1.09 and environmental loading ratio was 11.10 and the emergy sustainability index (ESI) was 0.10, highlighting some of the key challenges for the technology such as high energy consumption during harvesting, raw material consumption and high capital and operation costs. Alternatives scenarios and the sensitivity to process improvements were also assessed, helping prioritize further research based on sustainability impact. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe production of methyl and ethyl esters derived from baru oil (Dipteryx alata Vog.). Water and alcohols are removed from the biodiesel obtained by simple distillation. We study the acidity, density, iodine number, viscosity, water content, peroxide number, external appearance, and saponification number of the oil, its methyl and ethyl esters (biodiesels) and their blends (B5, B10, B15, B20, and B30) with commercial diesel fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioenergetic analysis may be applied in order to predict microbial growth yields, based on the Gibbs energy dissipation and mass conservation principles of the overall growth reaction. The bioenergetics of the photoautotrophic growth of the cyanobacterium Arthrospira (Spirulina) platensis was investigated in different bioreactor configurations (tubular photobioreactor and open ponds) using different nitrogen sources (nitrate and urea) and under different light intensity conditions to determine the best growing conditions in terms of Gibbs energy dissipation, number of photons to sustain cell growth and phototrophic energy yields distribution in relation to the ATP and NADPH formation, and release of heat. Although an increase in the light intensity increased the Gibbs energy dissipated for cell growth and maintenance with both nitrogen sources, it did not exert any appreciable influence on the moles of photons absorbed by the system to produce one C-mol biomass. On the other hand, both bioenergetic parameters were higher in cultures with nitrate than with urea, likely because of the higher energy requirements needed to reduce the former nitrogen source to ammonia. They appreciably increased also when open ponds were substituted by the tubular photobioreactor, where a more efficient light distribution ensured a remarkably higher cell mass concentration. The estimated percentages of the energy absorbed by the cell showed that, compared with nitrate, the use of urea as nitrogen source allowed the system to address higher energy fractions to ATP production and light fixation by the photosynthetic apparatus, as well as a lower fraction released as heat. The best energy yields values on Gibbs energy necessary for cell growth and maintenance were achieved in up to 4-5 days of cultivation, indicating that it would be the optimum range to maintain cell growth. Thanks to this better bioenergetic situation, urea appears to be a quite promising low-cost, alternative nitrogen source for Arthrospira platensis cultures in photobioreactors. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Similar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady-state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large-scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On January 1 2008, Brazil included yet another element into its energy matrix: biodiesel. The predominant biodiesel production process involves a phase of transesterification that yields glycerol as a by-product. The use of this glycerol is limited since it is considered an unrefined raw material that must be refined for its various types of use. Several studies have addressed identification of possible uses for unrefined glycerol. Given the diversity of uses, an overview is necessary. The purpose of this work is to present alternatives currently being considered for the use of unrefined glycerol as a by-product of biodiesel production, aiming to contribute to the sustainable consolidation of the biofuel market. Exploratory research was carried out to identify these viable alternatives for the use of this by-product. The possibilities include the production of chemical products, fuel additives, production of hydrogen, development of fuel cells, ethanol or methanol production, animal feed, co-digestion and co-gasification, and waste treatment among others. The present research reveals that there are promising possibilities for the use of unrefined glycerol, which may help consolidate the sustainability of the biofuel market. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of organic acids in intracellular extracts and in the cultivation media of marine microalgae aid investigations about metabolic routes related to assimilation of atmospheric carbon by these organisms, which are known by their role in the carbon dioxide sink. The separation of these acids was investigated by hydrophilic interaction liquid chromatography (HILIC) using isocratic elution with a mobile phase composed of 70: 30 v/v acetonitrile/20 mmol/L ammonium acetate buffer (pH 6.8) and detection at 220 nm. HILIC allowed the determinations of glycolic acid, the most important metabolite for the evaluation of the photorespiration process in algae, to be made with better selectivity than that achieved by reversed phase liquid chromatography, but with less detectability. The concentration of glycolic acid was determined in the cultivation media and in intracellular extracts of the algae Tetraselmis gracilis and Phaeodactylum tricornutum submitted to different conditions of aeration: (i) without forced aeration, (ii) aeration with atmospheric air, and (iii) bubbling with N(2). The concentration of glycolic acid had a higher increase as the cultures were aerated with nitrogen, showing higher photorespiratory flux than that occurring in the cultures aerated with atmospheric air.