14 resultados para Metals at high temperatures

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical memories with long-term stability at high temperatures have long been pursued in azopolymers with photoinduced birefringence. In this study, we show that the residual birefringence in layer-by-layer (LbL) films made with poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) alternated with poly(allylamine hydrochloride) (PAH) can be tuned by varying the extent of electrostatic interactions with film fabrication at different pHs for PAH. The dynamics of both writing and relaxation processes could be explained with a two-stage mechanism involving the orientation of the chromophores per se and the chain movement. Upon calculating the activation energies for these processes, we demonstrate semiquantitatively that reduced electrostatic interactions in films prepared at higher pH, for which PAH is less charged, are responsible for the longer stability at high temperatures. This is attributed to orientation of PAZO chromophores via cooperative aggregation, where the presence of counterions hindered relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This investigation attempts to determine which environmental parameters of the bottom water and sediment control recent foraminifera fauna at Ezcurra Inlet (King George Island, Antarctica), using data collected during four summers (2002/03, 2003/04, 2004/05 and 2006/07). The study revealed that Ezcurra Inlet contain typical Antarctic foraminifera fauna with three distinct assemblages and few differences in environmental parameters. The species Bolivina pseudopunctata, Fursenkoina fusiformis, Portatrochammina antarctica, and Adercotryma glomerata were abundant in the samples. An elevated abundance, richness and diversity were common at the entrance of the inlet at depths greater than 55 m, where the inlet was characterized by low temperatures and muddy sand. In the inner part of the inlet (depth 30-55 m), richness and diversity were low and the most significant species were Cassidulinoides parkerianus, C. porrectus, and Psammosphaera fusca. Shallow waters showed low values of richness and abundance and high temperatures coupled with coarser sediment. In areas with high suspended matter concentrations and pH values associated with low salinity the most representative species were Hippocrepinella hirudinea and Hemisphaerammina bradyi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]-Gm (one disulfide bond) and [Thr2,6,11,15,d-Pro9]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16-Glu-Arg18-NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60?degrees C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu1 and the amidated C-terminal tripeptide Arg16-Glu-Arg18-NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d-Pro9]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright (c) 2012 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Snake Venom Metalloproteinases (SVMPs) are the most abundant components present in Viperidae venom. They are important in the induction of systemic alterations and local tissue damage after envenomation. In the present study, a metalloproteinase named BpMPI was isolated from Bothropoides pauloensis snake venom and its biochemical and enzymatic characteristics were determined. BpMPI was purified in two chromatography steps on ion exchange CM-Sepharose Fast flow and Sephacryl S-300. This protease was homogeneous on SOS-PAGE and showed a single chain polypeptide of 20 kDa under non reducing conditions. The partial amino acid sequence of the enzyme showed high similarity with other SVMPs enzymes from snake venoms. BpMPI showed proteolytic activity upon azocasein and bovine fibrinogen and was inhibited by EDTA, 1,10 phenanthroline and beta-mercaptoethanol. Moreover, this enzyme showed stability at neutral and alkaline pH and it was inactivated at high temperatures. BpMPI was able to hydrolyze glandular and tissue kallikrein substrates, but was unable to act upon factor Xa and plasmin substrates. The enzyme did not induce local hemorrhage in the dorsal region of mice even at high doses. Taken together, our data showed that BpMP-I is in fact a fibrinogenolytic metalloproteinase and a non hemorrhagic enzyme. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of elongated body shapes in vertebrates has intrigued biologists for decades and is particularly recurrent among squamates. Several aspects might explain how the environment influences the evolution of body elongation, but climate needs to be incorporated in this scenario to evaluate how it contributes to morphological evolution. Climatic parameters include temperature and precipitation, two variables that likely influence environmental characteristics, including soil texture and substrate coverage, which may define the selective pressures acting during the evolution of morphology. Due to development of geographic information system (GIS) techniques, these variables can now be included in evolutionary biology studies and were used in the present study to test for associations between variation in body shape and climate in the tropical lizard family Gymnophthalmidae. We first investigated how the morphological traits that define body shape are correlated in these lizards and then tested for associations between a descriptor of body elongation and climate. Our analyses revealed that the evolution of body elongation in Gymnophthalmidae involved concomitant changes in different morphological traits: trunk elongation was coupled with limb shortening and a reduction in body diameter, and the gradual variation along this axis was illustrated by less-elongated morphologies exhibiting shorter trunks and longer limbs. The variation identified in Gymnophthalmidae body shape was associated with climate, with the species from more arid environments usually being more elongated. Aridity is associated with high temperatures and low precipitation, which affect additional environmental features, including the habitat structure. This feature may influence the evolution of body shape because contrasting environments likely impose distinct demands for organismal performance in several activities, such as locomotion and thermoregulation. The present study establishes a connection between morphology and a broader natural component, climate, and introduces new questions about the spatial distribution of morphological variation among squamates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dependences of phase stability and solid state phase transitions on the crystallite size in ZrO2-10, 12 and 14 mol% Sc2O3 nanopowders are investigated by X-ray powder diffraction using a synchrotron source (S-XPD). The average crystallite sizes lie within the range of 35 to 100 nm, approximately. At room temperature these solid solutions were previously characterised as mixtures of a cubic phase and one or two rhombohedral phases, beta and gamma, with their fractions depending on composition and average crystallite sizes. In this study, it is shown that at high temperatures these solid solutions become cubic single-phased. The size-dependent temperatures of the transitions from the rhombohedral phases to the cubic phase at high temperature are determined through the analyses of a number of S-XPD patterns. These transitions were studied on cooling and on heating, exhibiting hysteresis effects whose relevant features are size and composition dependent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metallic carbides exhibit many novel prototypes of crystalline structure. Among these compounds Th2NiC2 was reported in 1991 as a new carbide which crystallizes in the U2IrC2 prototype structure. In this work we report a reinvestigation of the synthesis of this compound. We find that Th2NiC2 is a new superconductor. Our results suggest that this phase is stable only at high temperatures in the system Th-Ni-C. The substitution of Th by Sc stabilizes the phase and improves the superconducting properties. The highest superconducting critical temperature occurs at 11.2 K with nominal composition Th1.8Sc0.2NiC2. The electronic coefficient determined by specific heat measurements is close to zero. This unusual result can be explained by covalent bonding in the compound.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este estudo teve por objetivo investigar potenciais efeitos do fogo na germinação de sementes de capim-dourado (Syngonanthus nitens) (Bong.) Ruhland (Eriocaulaceae). Sementes coletadas na região do Jalapão, Tocantins, foram submetidas a choques de temperaturas de 60º, 100 ºC, 150 ºC e 200 ºC durante 1, 3 e 5 minutos. Foram feitas 5 réplicas, com 20 sementes para cada tratamento, e controle. As sementes foram dispostas em placas de Petri e em câmaras de germinação a 28 ºC, fotoperíodo 12h/12h, por 40 dias. As taxas de germinação das sementes foram analisadas por meio de ANOVA com teste de aleatorização. A maioria dos tratamentos resultou em altas taxas de germinação (>85%), exceto 200ºC/3' (50%) e 200ºC/5', que apresentou uma queda significativa (4,5%, P<0,05). Os resultados obtidos indicam que as sementes de S. nitens não são estimuladas nem mortas por altas temperaturas, exceto quando combinados temperatura e tempos de exposição extremos (200ºC/5'). A passagem do fogo é muito rápida durante queimadas nos campos úmidos, onde S. nitens ocorre e as temperaturas frequentemente não atingem os 150 ºC. Nessas condições, estes resultados indicam que as sementes de S. nitens potencialmente sobrevivem à passagem do fogo na maioria das queimadas. Esta informação é de utilidade imediata para o manejo desta espécie de alto valor comercial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrical resistivity measurements were performed on p-type Pb1-xEuxTe films with Eu content x = 4%, 5%, 6%, 8%, and 9%. The well-known metal-insulator transition that occurs around 5% at room temperature due to the introduction of Eu is observed, and we used the differential activation energy method to study the conduction mechanisms present in these samples. In the insulator regime (x>6%), we found that band conduction is the dominating conduction mechanism for high temperatures with carriers excitation between the valence band and the 4f levels originated from the Eu atoms. We also verified that mix conduction dominates the low temperatures region. Samples with x = 4% and 5% present a temperature dependent metal insulator transition and we found that this dependence can be related to the relation between the thermal energy k(B)T and the activation energy Delta epsilon(a). The physical description obtained through the activation energy analysis gives a new insight about the conduction mechanisms in insulating p-type Pb1-xEuxTe films and also shed some light over the influence of the 4f levels on the transport process in the insulator region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729813]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asphalt binder is used in the production of hot mixes asphalt (HMA) for paving and, due to the high temperatures used, generates fumes thatcontainn-alkanes and polycyclic aromatic hydrocarbons (PAH). Asphalt mixes prepared at lower temperatures, such as warm mixes asphalt (WMA), may contribute to reduce the emissions of those compounds and save energy. This paper investigatesn-alkanes and PAH in the total suspended particles during the preparation of WMA, in comparison with HMA, in laboratory. The results showed that the n-alkanes of the WMA and HMA presented C-max at n-C-26 and n-C-28, respectively; also, the total content of n-alkanes was higher for the HMA than forthe WMA. Besides, benzo[b]fluoranthene and benzo[a]anthracene were the major PAH in the WMA, while the higher temperatures of the HMA were observed to volatilize all larger PAH, demonstrating higher potential of inhalation exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60A degrees C) in liquid media (trypic soy broth-TSB and minimum salt medium-MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254-46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254-9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.