13 resultados para Metal cutting process
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.
Resumo:
The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.
Resumo:
A series of heavy metal oxide (HMO) glasses with composition 26.66B(2)O(3)-16GeO(2)-4 Bi2O3-(53.33-x)PbO-xPbF2 (0 <= x <= 40) were prepared and characterized with respect to their bulk (glass transition and crystallization temperatures, densities, molar volumes) and spectroscopic properties. Homogeneous glasses are formed up to x = 30, while crystallization of beta-PbF2 takes place at higher contents. Substitution of PbO by PbF2 shifts the optical band gap toward higher energies, thereby extending the UV transmission window significantly toward higher frequencies. Raman and infrared absorption spectra can be interpreted in conjunction with published reference data. Using B-11 and F-19 high-resolution solid state NMR as well as B-11/F-19 double resonance methodologies, we develop a quantitative structural description of this material. The fraction of four-coordinate boron is found to be moderately higher compared to that in glasses with the same PbO/B2O3 ratios, suggesting some participation of PbF2 in the network transformation process. This suggestion is confirmed by the F-19 NMR spectra. While the majority of the fluoride ions is present as ionic fluoride, similar to 20% of the fluorine inventory acts as a network modifier, resulting in the formation of four-coordinate BO3/2F- units. These units can be identified by F-19{B-11} rotational echo double resonance and B-11{F-19} cross-polarization magic angle spinning (CPMAS) data. These results provide the first unambiguous evidence of B-F bonding in a PbF2-modified glass system. The majority of the fluoride ions are found in a lead-dominated environment. F-19-F-19 homonuclear dipolar second moments measured by spin echo decay spectroscopy are quantitatively consistent with a model in which these ions are randomly distributed within the network modifier subdomain consisting of PbO, Bi2O3, and PbF2. This model, which implies both the features of atomic scale mixing with the network former borate species and some degree of fluoride ion clustering is consistent with all of the experimental data obtained on these glasses.
Resumo:
The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report on a new, promising nanotechnological approach for hydrometallurgy based on recyclable, chemically functionalized superparamagnetic nanoparticles. In this process, the metal ions (e.g. Cu2+) are captured by the nanoparticles and confined at the electrode surface by means of an external magnet. Due to the pre-concentration effect the electrodeposition process is greatly improved, yielding the pure metal in a much shorter time in comparison with the conventional electrodeposition process. After the electrolysis, the magnetic nanoparticles are ready to return to the process. The proposed strategy can advantageously be incorporated in hydrometallurgy, reducing the number of steps associated with complexation, organic solvent extraction, metal release and diffusional electroprocessing, leading to a more sustainable technology. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a detailed study of carbon-enhanced metal-poor (CEMP) stars, based on high-resolution spectroscopic observations of a sample of 18 stars. The stellar spectra for this sample were obtained at the 4.2 m William Herschel Telescope in 2001 and 2002, using the Utrecht Echelle Spectrograph, at a resolving power R similar to 52 000 and S/N similar to 40, covering the wavelength range lambda lambda 3700-5700 angstrom. The atmospheric parameters determined for this sample indicate temperatures ranging from 4750 K to 7100 K, log g from 1.5 to 4.3, and metallicities -3.0 <= [Fe/H]<=-1.7. Elemental abundances for C, Na, Mg, Sc, Ti, Cr, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, Gd, Dy are determined. Abundances for an additional 109 stars were taken from the literature and combined with the data of our sample. The literature sample reveals a lack of reliable abundance estimates for species that might be associated with the r-process elements for about 67% of CEMP stars, preventing a complete understanding of this class of stars, since [Ba/Eu] ratios are used to classify them. Although eight stars in our observed sample are also found in the literature sample, Eu abundances or limits are determined for four of these stars for the first time. From the observed correlations between C, Ba, and Eu, we argue that the CEMP-r/s class has the same astronomical origin as CEMP-s stars, highlighting the need for a more complete understanding of Eu production.
Resumo:
The immobilization of metal nanoparticles in magnetic responsive solids allows the easy, fast, and clean separation of catalysts; however, the efficiency of this separation process depends on a strong metalsupport interaction. This interaction can be enhanced by functionalizing the support surface with amino groups. Our catalyst support contains an inner core of magnetite that enables the magnetic separation from liquid systems and an external surface of silica suitable for further modification with organosilanes. We report herein that a magnetically recoverable amino-functionalized support captured iridium species from liquid solutions and produced a highly active hydrogenation catalyst with negligible metal leaching. An analogous Ir0 catalyst prepared with use of a nonfunctionalized support shows a higher degree of metal leaching into the liquid products. The catalytic performance in the hydrogenation of alkenes is compared with that of Rh and Pt catalysts.
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.
Resumo:
In this communication, we investigate the effect of different surfactants: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP-K40) on the growth process of zinc molybdate (beta-ZnMoO4) microcrystals synthesized under hydrothermal conditions at 140 degrees C for 8 h. These microcrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) measurements. XRD patterns proved that these crystals are monophasic and present a wolframite-type monoclinic structure. FE-SEM images revealed that the surfactants modified the crystal shapes, suggesting the occurrence of distinct crystal growth processes. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of rectangle-like crystals, SDS anionic surfactant induces a growth of irregular hexagons with several porous due to considerable size effect of counter-ions on the crystal facets, PVP-K40 non-ionic surfactant allows a reduction in size and thickness of plate-like crystals, while without surfactants have the formation of irregular plate-like crystals. Finally, the PL properties of beta-ZnMoO4 microcrystals were explained by means of different shape/size, surface defects and order-disorder into lattice. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this paper is to present an analysis of the use of residual marble mixtures in the pig iron desulfurization process. The study involved the use of: marble waste, fluorspar, lime, and hot metal. Four mixtures were made and added to a liquid hot metal - with known chemical composition - at a temperature of 1450ºC. The mass of each element was calculated from its chemical analysis and compared with an industrial mixture. All of the four mixtures used in the experiments were stirred by a mechanical stirrer. Samples were collected by vacuum sampling for times of 5, 10, 15, 20, and 30 minutes, and analysis was performed to check sulfur variation in the bath with time. The results were analyzed and they verified that it was possible to use marble waste as a desulfurizer.
Resumo:
Cutting tools with higher wear resistance are those manufactured by powder metallurgy process, which combines the development of materials and design properties, features of shape-making technology and sintering. The annual global market of cutting tools consumes about US$ 12 billion; therefore, any research to improve tool designs and machining process techniques adds value or reduces costs. The aim is to describe the Spark Plasma Sintering (SPS) of cutting tools in functionally gradient materials, to show this structure design suitability through thermal residual stress model and, lastly, to present two kinds of inserts. For this, three cutting tool materials were used (Al2O3-ZrO2, Al2O3-TiC and WC-Co). The samples were sintered by SPS at 1300 °C and 70 MPa. The results showed that mechanical and thermal displacements may be separated during thermal treatment for analysis. Besides, the absence of cracks indicated coherence between experimental results and the residual stresses predicted.
Resumo:
There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.