17 resultados para Magnetic films and multilayers

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications. including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function. with exponent similar to 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAHIPVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10(-6) M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost. fast experimental procedures. (C) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 +/- 3-Ma-old Piracaia pluton (NW of Sao Paulo State, southern Brazil). This intrusion is roughly elliptical (similar to 32 km(2)), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A template-based lamination technique for the manufacture of ferroelectrets from uniform electret films was recently reported. In the present work, this technique is used to prepare similar ferroelectret structures from low-density polyethylene (LDPE) films and from fluoro-ethylene-propylene (FEP) copolymer films. A comparative analysis of the pressure-, temperature-, and frequency-dependent piezoelectric properties has been performed on the two ferroelectret systems. It is observed that the FEP ferroelectrets exhibit better piezoelectric responses and are thermally more stable. The difference between the piezoelectric d(33) coefficients of the two ferroelectret systems is partially explained here by their different elastic moduli. The anti-resonance peaks of both structures have been investigated by means of dielectric resonance spectroscopy and electroacoustic sound-pressure measurements. A difference of more than 10 kHz is observed between the anti-resonance frequencies of the two ferroelectret systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is studied. Structurally stable non-nested magnetic surfaces are considered. For any inversion in the internal current density the magnetic families define several positive current channels about a central negative one. A general expression relating the positive and negative currents is derived in terms of a topological anisotropy parameter. Next, an analytical local solution for the poloidal magnetic flux is derived and shown compatible with current hollow magnetic pitch measurements shown in the literature. Finally, the analytical solution exhibits non-nested magnetic families with positive anisotropy, indicating that the current inside the positive channels have at least twice the magnitude of the central one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive Sputter Magnetron (RSM) is a widely used technique to thin films growing of compounds both, in research laboratories and in industrial processes. The nature of the deposited compound will depend then on the nature of the magnetron target and the nature of the ions generated in the plasma. One important aspect of the problem is the knowledge of the evolution of the film during the process of growing itself. In this work, we present the design, construction of a chamber to be installed in the Huber goniometer in the XRD2 line of LNLS in Campinas, which allows in situ growing kinetic studies of thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer films of carboxymethylcellulose (CMC), a polyanion, and bromide salts of poly(4-vinylpyridine) quaternized with linear aliphatic chains of 2 (ethyl) and 5 (pentyl) carbon atoms, coded as QPVP-C2 and QPVP-C5, respectively, were fabricated by layer-by-layer (LbL) self-assembly onto Si/SiO2 wafers (hydrophilic substrate) or polystyrene, PS, films (hydrophobic substrate). The films were characterized by means of ex situ and in situ ellipsometry, atomic force microscopy (AFM), contact angle measurements and sum frequency generation vibrational spectroscopy (SFG). Antimicrobial tests were used to assess the exposure of pyridinium moieties to the aqueous medium. In situ ellipsometry indicated that for Si/SiO2 the chains were more expanded than the PS films and both substrates systems composed of QPVP-C5 were thicker than those with QPVP-C2. For dried layers, the alkyl side group size had a small effect on the thickness evolution, regardless of the substrate. At pH 2 the multilayers showed high resistance, evidencing that the build-up is driven not only by cooperative polymer-polymer ion pairing, but also by hydrophobic interactions between the alkyl side chains. The LbL films became irregular as the number of depositions increased. After the last deposition, the wettability of QPVP-C2 or QPVP-C5 terminated systems on the Si/SiO2 wafers and PS films were similar, except for QPVP-C2 on Si/SiO2 wafers. Unlike the morphology observed for LbL films on Si/SiO2 wafers, PS induced the formation of porous structures. SFG showed that in air the molecular orientation of pyridinium groups in multilayers with QPVP-C5 was stronger than in those containing QPVP-C2. The exposure of pyridinium moieties to the aqueous medium was more pronounced when the LbL were assembled on Si/SiO2 wafers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (gamma-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+) -limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the effect reduction in the density of dangling bond species D-0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si-1_(x) REx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D-0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The weakening mechanisms involved in the collapse of complex impact craters are controversial. The Araguainha impact crater, in Brazil, exposes a complex structure of 40 km in diameter, and is an excellent object to address this issue. Its core is dominated by granite. In addition to microstructural observations, magnetic studies reveal its internal fabric acquired during the collapse phase. All granite samples exhibit impact-related planar deformation features (PDFs) and planar fractures (PFs), which were overprinted by cataclasis. Cataclastic deformation has evolved from incipient brittle fracturing to the development of discrete shear bands in the center of the structure. Fracture planes are systematically decorated by tiny grains (<10 mu m) of magnetite and hematite, and the orientation of magnetic lineation and magnetic foliation obtained by the anisotropies of magnetic susceptibility (AMS) and anhysteretic remanence (AAR) are perfectly coaxial in all studied sites. Therefore, we could track the orientation of deformation features which are decorated by iron oxides using the AMS and AAR. The magnetic fabrics show a regular pattern at the borders of the central peak, with orientations consistent with the fabric of sediments at the crater's inner collar and complex in the center of the structure. Both the cataclastic flow revealed from microstructural observations and the structural pattern of the magnetic anisotropy match the predictions from numerical models of complex impact structures. The widespread occurrence of cataclasis in the central peak, and its orientations revealed by magnetic studies indicate that acoustic fluidization likely operates at all scales, including the mineral scales. The cataclastic flow made possible by acoustic fluidization results in an apparent plastic deformation at the macroscopic scale in the core. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20- tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (γ-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+)-limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.