15 resultados para Machine Learning,hepatocellular malignancies,HCC,MVI

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several recent studies in literature have identified brain morphological alterations associated to Borderline Personality Disorder (BPD) patients. These findings are reported by studies based on voxel-based-morphometry analysis of structural MRI data, comparing mean gray-matter concentration between groups of BPD patients and healthy controls. On the other hand, mean differences between groups are not informative about the discriminative value of neuroimaging data to predict the group of individual subjects. In this paper, we go beyond mean differences analyses, and explore to what extent individual BPD patients can be differentiated from controls (25 subjects in each group), using a combination of automated-morphometric tools for regional cortical thickness/volumetric estimation and Support Vector Machine classifier. The approach included a feature selection step in order to identify the regions containing most discriminative information. The accuracy of this classifier was evaluated using the leave-one-subject-out procedure. The brain regions indicated as containing relevant information to discriminate groups were the orbitofrontal, rostral anterior cingulate, posterior cingulate, middle temporal cortices, among others. These areas, which are distinctively involved in emotional and affect regulation of BPD patients, were the most informative regions to achieve both sensitivity and specificity values of 80% in SVM classification. The findings suggest that this new methodology can add clinical and potential diagnostic value to neuroimaging of psychiatric disorders. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Transforming growth factor alpha (TGF alpha) is an important mitogen that binds to epidermal growth factor receptor and is associated with the development of several tumors. Aims. Assessment of the immunoexpression of TGF alpha in hepatocellular carcinoma (HCC) and in non-neoplastic liver tissue and its relationship to morphological patterns of HCC. Material and methods. The immunohistochemical expression of TGF alpha was studied in 47 cases of HCC (27 multinodular, 20 nodular lesions). Five lesions measured up to 5 cm and 15 lesions above 5 cm. Thirty-two cases were graded as I or II and 15 as III or IV. The non-neoplastic tissue was examined in 40 cases, of which 22 had cirrhosis. HBsAg and anti-HCV were positive in 5/38 and 15/37 patients, respectively. The statistical analysis for possible association of immunostaining of TGF alpha and pathological features was performed through chi-square test. Results. TGF alpha was detected in 31.9% of the HCC and in 42.5% of the non-neoplastic. There was a statistically significant association between the expression of TGF alpha and cirrhosis (OR = 8.75, 95% CI = [1.93, 39.75]). The TGF alpha was detected more frequently in patients anti-HCV(+) than in those HBsAg(+). The immunoexpression of TGF alpha was not found related to tumor size or differentiation. In conclusion the TGF alpha is present in hepatocarcinogenesis in HBV negative patients. Further analysis is needed to examine the involvement of TGF alpha in the carcinogenesis associated with HCV and other possible agents. In addition, TGF alpha has an higher expression in hepatocyte regeneration and proliferation in cirrhotic livers than in HCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The criteria for organ sharing has developed a system that prioritizes liver transplantation (LT) for patients with hepatocellular carcinoma (HCC) who have the highest risk of wait-list mortality. In some countries this model allows patients only within the Milan Criteria (MC, defined by the presence of a single nodule up to 5 cm, up to three nodules none larger than 3 cm, with no evidence of extrahepatic spread or macrovascular invasion) to be evaluated for liver transplantation. This police implies that some patients with HCC slightly more advanced than those allowed by the current strict selection criteria will be excluded, even though LT for these patients might be associated with acceptable long-term outcomes. Methods We propose a mathematical approach to study the consequences of relaxing the MC for patients with HCC that do not comply with the current rules for inclusion in the transplantation candidate list. We consider overall 5-years survival rates compatible with the ones reported in the literature. We calculate the best strategy that would minimize the total mortality of the affected population, that is, the total number of people in both groups of HCC patients that die after 5 years of the implementation of the strategy, either by post-transplantation death or by death due to the basic HCC. We illustrate the above analysis with a simulation of a theoretical population of 1,500 HCC patients with tumor size exponentially. The parameter λ obtained from the literature was equal to 0.3. As the total number of patients in these real samples was 327 patients, this implied in an average size of 3.3 cm and a 95% confidence interval of [2.9; 3.7]. The total number of available livers to be grafted was assumed to be 500. Results With 1500 patients in the waiting list and 500 grafts available we simulated the total number of deaths in both transplanted and non-transplanted HCC patients after 5 years as a function of the tumor size of transplanted patients. The total number of deaths drops down monotonically with tumor size, reaching a minimum at size equals to 7 cm, increasing from thereafter. With tumor size equals to 10 cm the total mortality is equal to the 5 cm threshold of the Milan criteria. Conclusion We concluded that it is possible to include patients with tumor size up to 10 cm without increasing the total mortality of this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-element analysis of honey samples was carried out with the aim of developing a reliable method of tracing the origin of honey. Forty-two chemical elements were determined (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr) by inductively coupled plasma mass spectrometry (ICP-MS). Then, three machine learning tools for classification and two for attribute selection were applied in order to prove that it is possible to use data mining tools to find the region where honey originated. Our results clearly demonstrate the potential of Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) chemometric tools for honey origin identification. Moreover, the selection tools allowed a reduction from 42 trace element concentrations to only 5. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There is clinical evidence that very low and safe levels of amplitude-modulated electromagnetic fields administered via an intrabuccal spoon-shaped probe may elicit therapeutic responses in patients with cancer. However, there is no known mechanism explaining the anti-proliferative effect of very low intensity electromagnetic fields. METHODS: To understand the mechanism of this novel approach, hepatocellular carcinoma (HCC) cells were exposed to 27.12 MHz radiofrequency electromagnetic fields using in vitro exposure systems designed to replicate in vivo conditions. Cancer cells were exposed to tumour-specific modulation frequencies, previously identified by biofeedback methods in patients with a diagnosis of cancer. Control modulation frequencies consisted of randomly chosen modulation frequencies within the same 100 Hz-21 kHz range as cancer-specific frequencies. RESULTS: The growth of HCC and breast cancer cells was significantly decreased by HCC-specific and breast cancer-specific modulation frequencies, respectively. However, the same frequencies did not affect proliferation of nonmalignant hepatocytes or breast epithelial cells. Inhibition of HCC cell proliferation was associated with downregulation of XCL2 and PLP2. Furthermore, HCC-specific modulation frequencies disrupted the mitotic spindle. CONCLUSION: These findings uncover a novel mechanism controlling the growth of cancer cells at specific modulation frequencies without affecting normal tissues, which may have broad implications in oncology. British Journal of Cancer (2012) 106, 307-313. doi:10.1038/bjc.2011.523 www.bjcancer.com Published online 1 December 2011 (C) 2012 Cancer Research UK

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains.