2 resultados para MacFarlane
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Genome-wide association studies (GWAS) require large sample sizes to obtain adequate statistical power, but it may be possible to increase the power by incorporating complementary data. In this study we investigated the feasibility of automatically retrieving information from the medical literature and leveraging this information in GWAS. Methods: We developed a method that searches through PubMed abstracts for pre-assigned keywords and key concepts, and uses this information to assign prior probabilities of association for each single nucleotide polymorphism (SNP) with the phenotype of interest - the Adjusting Association Priors with Text (AdAPT) method. Association results from a GWAS can subsequently be ranked in the context of these priors using the Bayes False Discovery Probability (BFDP) framework. We initially tested AdAPT by comparing rankings of known susceptibility alleles in a previous lung cancer GWAS, and subsequently applied it in a two-phase GWAS of oral cancer. Results: Known lung cancer susceptibility SNPs were consistently ranked higher by AdAPT BFDPs than by p-values. In the oral cancer GWAS, we sought to replicate the top five SNPs as ranked by AdAPT BFDPs, of which rs991316, located in the ADH gene region of 4q23, displayed a statistically significant association with oral cancer risk in the replication phase (per-rare-allele log additive p-value [p(trend)] = 2.5 x 10(-3)). The combined OR for having one additional rare allele was 0.83 (95% CI: 0.76-0.90), and this association was independent of previously identified susceptibility SNPs that are associated with overall UADT cancer in this gene region. We also investigated if rs991316 was associated with other cancers of the upper aerodigestive tract (UADT), but no additional association signal was found. Conclusion: This study highlights the potential utility of systematically incorporating prior knowledge from the medical literature in genome-wide analyses using the AdAPT methodology. AdAPT is available online (url: http://services.gate.ac.uk/lld/gwas/service/config).
Resumo:
We investigated the association between diet and head and neck cancer (HNC) risk using data from the International Head and Neck Cancer Epidemiology (INHANCE) consortium. The INHANCE pooled data included 22 case-control studies with 14,520 cases and 22,737 controls. Center-specific quartiles among the controls were used for food groups, and frequencies per week were used for single food items. A dietary pattern score combining high fruit and vegetable intake and low red meat intake was created. Odds ratios (OR) and 95% confidence intervals (CI) for the dietary items on the risk of HNC were estimated with a two-stage random-effects logistic regression model. An inverse association was observed for higher-frequency intake of fruit (4th vs. 1st quartile OR = 0.52, 95% CI = 0.43-0.62, p (trend) < 0.01) and vegetables (OR = 0.66, 95% CI = 0.49-0.90, p (trend) = 0.01). Intake of red meat (OR = 1.40, 95% CI = 1.13-1.74, p (trend) = 0.13) and processed meat (OR = 1.37, 95% CI = 1.14-1.65, p (trend) < 0.01) was positively associated with HNC risk. Higher dietary pattern scores, reflecting high fruit/vegetable and low red meat intake, were associated with reduced HNC risk (per score increment OR = 0.90, 95% CI = 0.84-0.97).