9 resultados para MULTIVARIATE APPROACH
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Although a large amount of data have been published in past years on the taxonomic status of the Anastrepha fraterculus (Wiedemann) species complex, there is still a need to know how many species this complex comprises, the distribution of each one, and their distinguishing features. In this study, we assessed the morphometric variability of 32 populations from the A. fraterculus complex, located in major biogeographical areas from the Neotropics. Multivariate techniques for analysis were applied to the measurements of 21 variables referring to the mesonotum, aculeus, and wing. For the first time, our results identified the presence of seven distinct morphotypes within this species complex. According to the biogeographical areas, populations occurring in the Mesoamerican dominion (Mexico, Guatemala, and Panama) were clustered within a single natural entity labeled as the "Mexican" morphotype; whereas in the northwestern South American dominion, samples fell into three distinct groups: the "Venezuelan" morphotype with a single population from the Caribbean lowlands of Venezuela, the "Andean" morphotype from the highlands of Venezuela and Colombia, and the third group or "Peruvian" morphotype comprised the samples from the Pacific coastal lowlands of Ecuador and Peru. Three additional groups were identified from the Chacoan and Paranaense sub-regions: the morphotype "Brazilian-1" was recognized as including the Argentinean samples with most pertaining to Brazil, and widely distributed in these biogeographical areas; the morphotype "Brazilian-2" was recognized as including two samples from the state of Sao Paulo (Ilha-Bela and Sao Sebastiao); whereas the morphotype "Brazilian-3" included a single population from Botucatu (state of Sao Paulo). Based on data published by previous authors showing genetic and karyotypic differentiation, as well as reproductive isolation, we have concluded that such morphotypes indeed represent natural groups and distinct taxonomic entities.
Resumo:
The present study evaluated the relative growth and allometry of Massartella brieni Lestage and Thraulodes sp. (Leptophlebiidae: Ephemeroptera). The morphometric analysis was based on 23 measurements and was conducted using a multivariate approach. Throughout postembryonic ontogeny, all of the head measurements, including those of the mouthparts, exhibited negative allometric growth. The mesothorax and wing pad exhibited positive allometric growth. The hind legs lengths in M. brieni and the fore and hind legs lengths in Thraulodes sp. exhibited positive allometry. The abdominal length in these two species exhibited positive allometric growth. Positive allometry was also observed along the abdomen width for M. brieni, and isometry was observed for Thraulodes sp. The relative strengthening of the thorax (in preparation for the winged stage) and the relative increase in the abdomen (which may be related to the development of the reproductive structures) during growth indicate that many of the structures that exhibit positive allometric growth are related to the transition from the aquatic to the adult stage of development.
Resumo:
The objective of this study was to investigate whether differences in diet and in single-nucleotide polymorphisms (SNPs) found in paraoxonase-1 (PON-1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cholesterol ester transfer protein (CETP) and apolipoprotein E (APOE) genes, are associated with oxidative stress biomarkers and consequently with susceptibility of low-density cholesterol (LDL) to oxidation. A multivariate approach was applied to a group of 55 patients according to three biomarkers: plasma antioxidant activity, malondialdehyde and oxidized LDL (oxLDL) concentrations. Individuals classified in Cluster III showed the worst prognoses in terms of antioxidant activity and oxidative status. Individuals classified in Cluster I presented the lowest oxidative status, while individuals grouped in Cluster II presented the highest levels of antioxidant activity. No difference in nutrient intake was observed among the clusters. Significantly higher gamma- and delta-tocopherol concentrations were observed in those individuals with the highest levels of antioxidant activity. No single linear regression was statistically significant, suggesting that mutant alleles of the SNPs selected did not contribute to the differences observed in oxidative stress response. Although not statistically significant, the p value of the APO E coefficient for oxLDL response was 0.096, indicating that patients who carry the TT allele of the APO E gene tend to present lower plasma oxLDL concentrations. Therefore, the differences in oxidative stress levels observed in this study could not be attributed to diet or to the variant alleles of PON-1, CETP, HMGCR or APO E. This data supports the influence of gamma-tocopherol and delta-tocopherol on antioxidant activity, and highlights the need for further studies investigating APO E alleles and LDL oxidation.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.
Resumo:
The sera of a retrospective cohort (n = 41) composed of children with well characterized cow's milk allergy collected from multiple visits were analyzed using a protein microarray system measuring four classes of immunoglobulins. The frequency of the visits, age and gender distribution reflected real situation faced by the clinicians at a pediatric reference center for food allergy in 530 Paulo, Brazil. The profiling array results have shown that total IgG and IgA share similar specificity whilst IgM and in particular IgE are distantly related. The correlation of specificity of IgE and IgA is variable amongst the patients and this relationship cannot be used to predict atopy or the onset of tolerance to milk. The array profiling technique has corroborated the clinical selection criteria for this cohort albeit it clearly suggested that 4 out of the 41 patients might have allergies other than milk origin. There was also a good correlation between the array data and ImmunoCAP results, casein in particular. By using qualitative and quantitative multivariate analysis routines it was possible to produce validated statistical models to predict with reasonable accuracy the onset of tolerance to milk proteins. If expanded to larger study groups, the array profiling in combination with the multivariate techniques show potential to improve the prognostic of milk allergic patients. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate factors associated with reported work-related musculoskeletal symptoms among aircraft assembly workers. Population consisted of 552 (491 men/61 women) workers who performed tasks related to the work of aircraft assembly. Participants completed a comprehensive questionnaire, including socio-demographic information, habits/lifestyles, working conditions, and work organization. Workers also answered the Nordic Musculoskeletal Questionnaire to obtain data on musculoskeletal symptoms. Multivariate logistic regression was performed to analyze factors associated with musculoskeletal reported symptoms. Results showed that body regions with the highest prevalence of reported musculoskeletal symptoms were similar when referred the past twelve months and the past seven days. Significant factors associated with musculoskeletal symptoms included variables related to conflicts at work, sleep problems, mental fatigue, and lack of time for personal care and recovery. Working time in the industry was associated only with reports for the last seven days and regular physical activity off-work seems to be a positive factor in preventing musculoskeletal symptoms for the past twelve months. The results highlight the multi-factorial nature of the problem. Actions to prevent musculoskeletal diseases at the aircraft assembly work should consider multiple interventions that would promote better recovery between work shifts.
Resumo:
The development of new statistical and computational methods is increasingly making it possible to bridge the gap between hard sciences and humanities. In this study, we propose an approach based on a quantitative evaluation of attributes of objects in fields of humanities, from which concepts such as dialectics and opposition are formally defined mathematically. As case studies, we analyzed the temporal evolution of classical music and philosophy by obtaining data for 8 features characterizing the corresponding fields for 7 well-known composers and philosophers, which were treated with multivariate statistics and pattern recognition methods. A bootstrap method was applied to avoid statistical bias caused by the small sample data set, with which hundreds of artificial composers and philosophers were generated, influenced by the 7 names originally chosen. Upon defining indices for opposition, skewness and counter-dialectics, we confirmed the intuitive analysis of historians in that classical music evolved according to a master apprentice tradition, while in philosophy changes were driven by opposition. Though these case studies were meant only to show the possibility of treating phenomena in humanities quantitatively, including a quantitative measure of concepts such as dialectics and opposition, the results are encouraging for further application of the approach presented here to many other areas, since it is entirely generic.
Resumo:
Abstract Background Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing ~25,000 genes. Results Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. Conclusion We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.
Resumo:
Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.