67 resultados para MICE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several experimental studies of pulmonary emphysema using animal models have been described in the literature. However, only a few of these studies have focused on the assessment of ergometric function as a non-invasive technique to validate the methodology used for induction of experimental emphysema. Additionally, functional assessments of emphysema are rarely correlated with morphological pulmonary abnormalities caused by induced emphysema. The present study aimed to evaluate the effects of elastase administered by tracheal puncture on pulmonary parenchyma and their corresponding functional impairment. This was evaluated by measuring exercise capacity in C57Bl/6 mice in order to establish a reproducible and safe methodology of inducing experimental emphysema. Thirty six mice underwent ergometric tests before and 28 days after elastase administration. Pancreatic porcine elastase solution was administered by tracheal puncture, which resulted in a significantly decreased exercise capacity, shown by a shorter distance run (-30.5%) and a lower mean velocity (-15%), as well as in failure to increase the elimination of carbon dioxide. The mean linear intercept increased significantly by 50% in tracheal elastase administration. In conclusion, application of elastase by tracheal function in C57Bl/6 induces emphysema, as validated by morphometric analyses, and resulted in a significantly lower exercise capacity, while resulting in a low mortality rate. (C) 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence has suggested that systemic administration of non-selective NOS inhibitors induces antidepressant-like effects in animal models. However, the precise involvement of the different NOS isoforms (neuronal-nNOS and inducible-iNOS) in these effects has not been clearly defined yet. Considering that mediators of the inflammatory response, that are able to induce iNOS expression, can be increased by exposure to stress, the aim of the present study was to investigate iNOS involvement in stress-induced behavioral consequences in the forced swimming test (FST), an animal model sensitive to antidepressant drugs. Therefore, we investigated the effects induced by systemic injection of aminoguanidine (preferential iNOS inhibitor), 1400W (selective iNOS inhibitor) or n-propyl-L-arginine (NPA, selective nNOS inhibitor) in mice submitted to the FST. We also investigated the behavior of mice with genetic deletion of iNOS (knockout) submitted to the FST. Aminoguanidine significantly decreased the immobility time (IT) in the FST. 1400W but not NPA, when administered at equivalent doses considering the magnitude of their Ki values for iNOS and nNOS, respectively, reduced the IT, thus suggesting that aminoguanidine-induced effects would be due to selective iNOS inhibition. Similarly, iNOS KO presented decreased IT in the FST when compared to wild-type mice. These results are the first to show that selective inhibition of iNOS or its knockdown induces antidepressant-like effects, therefore suggesting that iNOS-mediated NO synthesis is involved in the modulation of stress-induced behavioral consequences. Moreover, they further support NO involvement in the neurobiology of depression. This article is part of a Special Issue entitled 'Anxiety and Depression'. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr-/-) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr-/- mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory T (Treg) cells are fundamental in the control of immunity and excessive tissue pathology. In paracoccidioidomycosis, an endemic mycosis of Latin America, the immunoregulatory mechanisms that control the progressive and regressive forms of this infection are poorly known. Due to its modulatory activity on Treg cells, we investigated the effects of anti-CD25 treatment over the course of pulmonary infection in resistant (A/J) and susceptible (B10.A) mice infected with Paracoccidioides brasiliensis. We verified that the resistant A/J mice developed higher numbers and more potent Treg cells than susceptible B10.A mice. Compared to B10.A cells, the CD4(+)CD25(+)Foxp3(+) Treg cells of A/J mice expressed higher levels of CD25, CTLA4, GITR, Foxp3, LAP and intracellular IL-10 and TGF-beta. In both resistant and susceptible mice, anti-CD25 treatment decreased the CD4(+)CD25(+)Foxp3(+) Treg cell number, impaired indoleamine 2,3-dioxygenase expression and resulted in decreased fungal loads in the lungs, liver and spleen. In A/J mice, anti-CD25 treatment led to an early increase in T cell immunity, demonstrated by the augmented influx of activated CD4(+) and CD8(+) T cells, macrophages and dendritic cells to the lungs. At a later phase, the mild infection was associated with decreased inflammatory reactions and increased Th1/Th2/Th17 cytokine production. In B10.A mice, anti-CD25 treatment did not alter the inflammatory reactions but increased the fungicidal mechanisms and late secretion of Th1/Th2/Th17 cytokines. Importantly, in both mouse strains, the early depletion of CD25(+) cells resulted in less severe tissue pathology and abolished the enhanced mortality observed in susceptible mice. In conclusion, this study is the first to demonstrate that anti-CD25 treatment is beneficial to the progressive and regressive forms of paracoccidioidomycosis, potentially due to the anti-CD25-mediated reduction of Treg cells, as these cells have suppressive effects on the early T cell response in resistant mice and the clearance mechanisms of fungal cells in susceptible mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oropouche virus, of the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu, is an important causative agent of arboviral febrile illness in Brazil. An estimated 500,000 cases of Oropouche fever have occurred in Brazil in the last 30 years, with recorded cases also in Panama, Peru, Suriname and Trinidad. We have developed an experimental model of Oropouche virus infection in neonatal BALB/c mouse by subcutaneous inoculation. The vast majority of infected animals developed disease on the 5th day post infection, characterized mainly by lethargy and paralysis, progressing to death within 10 days. Viral replication was documented in brain cells by in situ hybridization, immunohistochemistry and virus titration. Multi-step immunohistochemistry indicated neurons as the main target cells of OROV infection. Histopathology revealed glial reaction and astrocyte activation in the brain and spinal cord, with neuronal apoptosis. Spleen hyperplasia and mild meningitis were also found, without viable virus detected in liver and spleen. This is the first report of an experimental mouse model of OROV infection, with severe involvement of the central nervous system, and should become useful in pathogenesis studies, as well as in preclinical testing of therapeutic interventions for this emerging pathogen. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies showed that leptin-deficient (ob/ob) mice develop obesity and impaired ventilatory responses to CO2 . In this study, we examined if leptin replacement improves chemorespiratory responses to hypercapnia (7 % CO2) in ob/ob mice and if these effects were due to changes in body weight or to the direct effects of leptin in the central nervous system (CNS). was measured via plethysmography in obese leptin-deficient- (ob/ob) and wild-type- (WT) mice before and after leptin (10 mu g/2 mu l day) or vehicle (phosphate buffer solution) were microinjected into the fourth ventricle for four consecutive days. Although baseline was similar between groups, obese ob/ob mice exhibited attenuated compared to WT mice (134 +/- 9 versus 196 +/- 10 ml min(-1)). Fourth ventricle leptin treatment in obese ob/ob mice significantly improved (from 131 +/- 15 to 197 +/- 10 ml min(-1)) by increasing tidal volume (from 0.38 +/- 0.03 to 0.55 +/- 0.02 ml, vehicle and leptin, respectively). Subcutaneous leptin administration at the same dose administered centrally did not change in ob/ob mice. Central leptin treatment in WT had no effect on . Since the fourth ventricle leptin treatment decreased body weight in ob/ob mice, we also examined in lean pair-weighted ob/ob mice and found it to be impaired compared to WT mice. Thus, leptin deficiency, rather than obesity, is the main cause of impaired in ob/ob mice and leptin appears to play an important role in regulating chemorespiratory response by its direct actions on the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosoma mansoni synthesizes glycoconjugates which interact with galectin-3, eliciting an intense humoral immune response. Moreover, it was demonstrated that galectin-3 regulates B cell differentiation into plasma cells. Splenomegaly is a hallmark event characterized by polyclonal B cell activation and enhancement of antibody production. Here, we investigated whether galectin-3 interferes with spleen organization and B cell compartment during chronic schistosomiasis, using wild type (WT) and galectin-3(-/-) mice. In chronically-infected galectin-3(-/-) mice the histological architecture of the spleen, including white and red pulps, was disturbed with heterogeneous lymphoid follicles, an increased number of plasma cells (CD19(-)B220(-/low)CD138(+)) and a reduced number of macrophages (CD19(-)B220(-)Mac-1(+)CD138(-)) and B lymphocytes (CD19(+)B220(+/high)CD138(-)), compared with the WT infected mice. In the absence of galectin-3 there was an increase of annexin-V+PI- cells and a major presence of apoptotic cells in spleen compared with WT infected mice. In spleen of WT infected mice galectin-3 was largely expressed in lymphoid follicles and extrafollicular sites. Thus, we propose that galectin-3 plays a role in splenic architecture, controlling distinct events such as apoptosis, macrophage activity, B cell differentiation and plasmacytogenesis in the course of S. mansoni infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical ventilation is the major cause of iatrogenic lung damage in intensive care units. Although inflammation is known to be involved in ventilator-induced lung injury (VILI), several aspects of this process are still unknown. Pentraxin 3 (PTX3) is an acute phase protein with important regulatory functions in inflammation which has been found elevated in patients with acute respiratory distress syndrome. This study aimed at investigating the direct effect of PTX3 production in the pathogenesis of VILI. Genetically modified mice deficient and that over express murine Ptx3 gene were subjected to high tidal volume ventilation (V-T = 45 mL/kg, PEEPzero). Morphological changes and time required for 50% increase in respiratory system elastance were evaluated. Gene expression profile in the lungs was also investigated in earlier times in Ptx3-overexpressing mice. Ptx3 knockout and wild-type mice developed same lung injury degree in similar times (156 +/- 42 min and 148 +/- 41 min, respectively: p = 0.8173). However, Ptx3 overexpression led to a faster development of VILI in Ptx3-overexpressing mice (77 +/- 29 min vs 118 +/- 41 min, p = 0.0225) which also displayed a faster kinetics of Il1b expression and elevated Ptx3, Cxcl1 and Ccl2 transcripts levels in comparison with wild-type mice assessed by quantitative real-time polymerase chain reaction. Ptx3 deficiency did not impacted the time for VILI induced by high tidal volume ventilation but Ptx3-overexpression increased inflammatory response and reflected in a faster VILI development. (C) 2012 Elsevier Ltd. All rights reserved.