6 resultados para Linolenic
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics. bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11. C18:2 conjugated linoleic (CLA-1.4 times), and alpha-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4 degrees C, whereas no difference was seen in organic fermented milks. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND/OBJECTIVES: To assess the performance of a food frequency questionnaire (FFQ) for estimating omega-3, omega-6 and trans fatty acid intake during pregnancy. Moreover, we determined whether the fatty acid composition of mature breast milk represents a valuable biomarker for fatty acid intake during pregnancy. SUBJECTS/METHODS: A prospective study in 41 pregnant women, aged 18-35 years, was conducted. Food intake during pregnancy was evaluated by three 24-h recalls (24 hR), and 2 FFQ. The fatty acid composition of mature breast milk was determined by gas chromatography. The method of triads and joint classification between quartiles of intake were applied. RESULTS: The FFQ was accurate for estimating docosahexanoic (DHA), linoleic and total omega-6 fatty acids according to validity coefficients. Higher agreements (>70%) into the same or adjacent quartiles between the dietary methods were found for alpha-linolenic, total omega-3, linoleic and trans fatty acid intake. High validity coefficients for eicosapentanoic (EPA) and DHA acids of human milk were found (0.61 and 0.73, respectively), and the method was adequate for categorizing the intake of alpha-linolenic, total omega-3 and trans fatty acids compared with FFQ estimates, and for arachidonic acid and trans fatty acids compared with food recall estimates, during pregnancy. CONCLUSIONS: The FFQ was an accurate tool for categorizing alpha-linolenic, total omega-3 and trans fatty acid intake. According to the validity coefficients observed, the FFQ accurately estimated DHA, linoleic and total omega-6 fatty acids and the composition of mature breast milk was shown to be a suitable biomarker for EPA and DHA fatty acid intake during pregnancy.
Resumo:
This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of alpha-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products. (C) 2012 Elsevier By. All rights reserved.
Resumo:
In functional dairy products, polyunsaturated fatty acids such as, conjugated linoleic acid (CLA) and alpha-linolenic acid (ALA) have been highlighted for their benefits related to prevention of some chronic diseases. In order to study the effect of type of milk (conventional vs. organic, characterized by a specific fatty acid composition), Bifidobacterium animalis subsp. lactis (BB12, B94, BL04 and HN019) counts, acidification activity and chemical composition (pH, lactose, lactic acid contents and fatty acids profile) were investigated before fermentation and after 24 h of products stored at 4 degrees C. Organic and conventional milk influenced acidification performance and bacteria counts, which was strain-dependent. Higher counts of BB12 were observed in organic milk, whereas superior counts of BL04 were found in conventional milk. Organic fermented milk showed lower levels in saturated fatty acids (FA) and higher in monounsaturated FA contents. Similarly, among bioactive FA, organic fermented milks have higher amounts of trans vaccenic acid (TVA-C18:1t), conjugated linoleic acid (CLA) and slightly higher contents of alpha-linoleic acid (ALA). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.
Resumo:
Hundred forty-four Shaver White laying hens were used over a 4 week experimental period to investigate the effect of 3% of soybean oil, corn oil (MIL), canola oil, flaxseed oil (LIN), salmon oil (SAL) or tuna and sardine oil (SR/AT) added to the diets, upon the fatty acid egg yolk composition, blood plasma levels and incorporation time of each fatty acid into the egg yolk. Hens were allocated into 72 cages and the experimental design was a 6 x 6 randomized factorial model. Hens fed 3% of different oils, responded with increased polyunsaturated fatty acids omega 3 (ω-3 PUFAs), except for corn oil. The addition of flaxseed, soybean or corn oil into the diet increased the PUFAs levels into the egg yolk and in the blood plasma. Adding tuna and sardine oil into the diet increased the concentration of yolk saturated fatty acids. The levels of ω-3 PUFAs were increased in the tuna and sardine oil treatment, while the flaxseed oil increased the plasma fatty acids. The deposition of 349.28 mg/yolk of a-linolenic fatty acids (ALA) was higher in the group fed LIN, while the higher equal to 157.13 mg DHA/yolk was observed in group SR/AT. In the plasma, deposition increased from 0.33% (MIL) for 6.29% ALA (LIN), while that of DHA increase of 0.47% (MIL) for 4.24% (SAL) and 4.48% (SR/AT) and of 0.98% (MIL) for 6.14% (SR/AT) and 8.44% (LIN) of ω-3 PUFAs. The percentage of EPA into the yolk and plasma was higher for the hens fed 3% tuna and sardine oil diet, as well as the levels of yolk DHA. The concentration of DHA into the plasma was higher for the salmon and tuna/sardine oil treatments. The PUFAs yolk decreased during the first eight days of experiment, while the ω-3 PUFAs increased during the same period. The concentration of ALA increased until ten days of experiment, while the percentage of EPA and DHA increased up to the eighth experimental day