15 resultados para Ligand-steered Modeling Method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
A new method for analysis of scattering data from lamellar bilayer systems is presented. The method employs a form-free description of the cross-section structure of the bilayer and the fit is performed directly to the scattering data, introducing also a structure factor when required. The cross-section structure (electron density profile in the case of X-ray scattering) is described by a set of Gaussian functions and the technique is termed Gaussian deconvolution. The coefficients of the Gaussians are optimized using a constrained least-squares routine that induces smoothness of the electron density profile. The optimization is coupled with the point-of-inflection method for determining the optimal weight of the smoothness. With the new approach, it is possible to optimize simultaneously the form factor, structure factor and several other parameters in the model. The applicability of this method is demonstrated by using it in a study of a multilamellar system composed of lecithin bilayers, where the form factor and structure factor are obtained simultaneously, and the obtained results provided new insight into this very well known system.
Resumo:
Objective. The aim of this study was to investigate the local and systemic expression of CC-chemokine ligand 3 (CCL3) and its receptors (CCR1 and CCR5) in tissue samples and peripheral blood mononuclear cells of recurrent aphthous stomatitis (RAS) patients. Study Design. This case-control study enrolled 29 patients presenting severe RAS manifestations and 20 non-RAS patients proportionally matched by sex and age. Total RNA was extracted from biopsy specimens and peripheral blood mononuclear cells for quatitative reverse-transcription polymerase chain reaction. The data obtained by relative quantification were evaluated by the 2(-Delta Delta Ct) method, normalized by the expression of an endogenous control, and analyzed by Student t test. Results. The results demonstrated overexpression in RAS tissue samples of all of the chemokines evaluated compared with healthy oral mucosa, whereas the blood samples showed only CCR1 overexpression in RAS patients. Conclusions. These findings suggest that the increased expression of CCL3, CCR1, and CCR5 may influence the immune response in RAS by T(H)1 cytokine polarization. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:93-98)
Resumo:
A detailed theoretical study of the 1,7,1l,17-tetraoxa-2,6,12,16-tetraaza-cycloeicosane ligand ([20]AneN(4)O(4)) coordinated to Fe2+, Co2+, Ni2+, Ru2+, Rh2+, and Pd2+ transition metal ions was carried out with the B3LYP method. Two different cases were performed: when nitrogen is the donor atom (1a (q) ) and also with the oxygen as the donor atom (1b (q) ). For all the cases performed in this study 1a (q) structures were always more stable than the 1b (q) ones. Considering each row is possible to see that the energy increases with the increase of the atomic number. The M2+ cation binding energies for the 1a (q) complexes increase with the following order: Fe2+ < Ru2+ < Co2+ < Ni2+ < Rh2+ < Pd2+.
Resumo:
A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.
Resumo:
A theoretical study of structures of the 1,7,1 l,17-tetraoxa-2,6,12,16-tetraaza-cycloeicosane ligand ([20]AneN(4)O(4)) coordinated to Fe2+, Co2+, Ni2+, Ru2+, Rh2+, and Pd2+ transition metals ions was carried out with the DFT/B3LYP method. Complexes were fully optimized in C-s symmetry with the metal ions coordinated either to nitrogen (1a) or oxygen atoms (1b). For all the cases performed in this work, 1a was always more stable than 1b. Considering each row it is possible to see that the binding energy increases with the atomic number. The M2+ cation binding energies increase in the following order: Fe2+ < Ru2+ < Co2+ < Ni2+ < Rh2+ < Pd2+. In addition, it was observed the preference of Pd2+ and Rh2+ complexes for a tetrahedral arrangement, while Fe2+, Ru2+, Co2+, Ni2+ complexes had a preference for the octahedral arrangement. From the orbital representation results, it was seen that 1b unsymmetrical orbitals may influence the susceptibility over metal ions orientation toward heteroatoms orbitals.
Resumo:
A mathematical model and numerical simulations are presented to investigate the dynamics of gas, oil and water flow in a pipeline-riser system. The pipeline is modeled as a lumped parameter system and considers two switchable states: one in which the gas is able to penetrate into the riser and another in which there is a liquid accumulation front, preventing the gas from penetrating the riser. The riser model considers a distributed parameter system, in which movable nodes are used to evaluate local conditions along the subsystem. Mass transfer effects are modeled by using a black oil approximation. The model predicts the liquid penetration length in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The method of characteristics is used to simplify the differentiation of the resulting hyperbolic system of equations. The equations are discretized and integrated using an implicit method with a predictor-corrector scheme for the treatment of the nonlinearities. Simulations corresponding to severe slugging conditions are presented and compared to results obtained with OLGA computer code, showing a very good agreement. A description of the types of severe slugging for the three-phase flow of gas, oil and water in a pipeline-riser system with mass transfer effects are presented, as well as a stability map. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.
Resumo:
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Resumo:
This paper deals with the numerical analysis of saturated porous media, taking into account the damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated condition, based on Biot's Theory. A scalar damage model is assumed for this analysis. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary elements is evaluated using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficacy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Selective modulation of liver X receptor beta (LXR beta) has been recognized as an important approach to prevent or reverse the atherosclerotic process. In the present work, we have developed robust conformation-independent fragment-based quantitative structure-activity and structure-selectivity relationship models for a series of quinolines and cinnolines as potent modulators of the two LXR sub-types. The generated models were then used to predict the potency of an external test set and the predicted values were in good agreement with the experimental results, indicating the potential of the models for untested compounds. The final 2D molecular recognition patterns obtained were integrated to 3D structure-based molecular modeling studies to provide useful insights into the chemical and structural determinants for increased LXR beta binding affinity and selectivity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.
Resumo:
A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.