33 resultados para Lie groups, Lie algebras, linear representations of SL3
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.
Resumo:
We describe (braided-) commutative algebras with non-degenerate multiplicative form in certain braided monoidal categories, corresponding to abelian metric Lie algebras (so-called Drinfeld categories). We also describe local modules over these algebras and classify commutative algebras with a finite number of simple local modules.
Resumo:
We prove that the simple Lie algebras constructed by G. Jurman (2004) in 121 are isomorphic to Hamiltonian algebras. As a corollary we answer all questions formulated in G. Jurman (2004) [2] about isomorphisms of these algebras. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A subspace representation of a poset S = {s(1), ..., S-t} is given by a system (V; V-1, ..., V-t) consisting of a vector space V and its sub-spaces V-i such that V-i subset of V-j if s(i) (sic) S-j. For each real-valued vector chi = (chi(1), ..., chi(t)) with positive components, we define a unitary chi-representation of S as a system (U: U-1, ..., U-t) that consists of a unitary space U and its subspaces U-i such that U-i subset of U-j if S-i (sic) S-j and satisfies chi 1 P-1 + ... + chi P-t(t) = 1, in which P-i is the orthogonal projection onto U-i. We prove that S has a finite number of unitarily nonequivalent indecomposable chi-representations for each weight chi if and only if S has a finite number of nonequivalent indecomposable subspace representations; that is, if and only if S contains any of Kleiner's critical posets. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
We consider a generalized discriminant associated to a symmetric space which generalizes the discriminant of real symmetric matrices, and note that it can be written as a sum of squares of real polynomials. A method to estimate the minimum number of squares required to represent the discrimininant is developed and applied in examples.
Resumo:
OBJECTIVE: To analyze discourses on workplace psychological harassment in print media. METHODOLOGICAL PROCEDURES: Documental study on workplace psychological harassment that analyzed news stories published in three major newspapers of the State of Sao Paulo (southeastern Brazil) between 1990 and 2008. Discourse analysis was performed to identify discursive practices that reflect the phenomenon of psychological harassment in today's society, explanations for its occurrence and impact on workers' health. RESULT ANALYSIS: This theme emerged in the media through the dissemination of books, academic research production and laws. It was initially published in general news then in jobs and/or business sections. Discourses on compensation and precautionary business practices and coping strategies are widespread. Health-related aspects are foregone under the prevailing money-based rationale. Corporate cultures are permissive regarding psychological harassment and conflicts are escalated while working to achieve goals and results. Indifference, embarrassment, ridicule and demean were common in the news stories analyzed. CONCLUSIONS: The causal explanations of workplace harassment tend to have a psychological interpretation with emphasis on individual and behavioral characteristics, and minimizing a collective approach. The discourses analyzed trivialized harassment by creating caricatures of the actors involved. People apprehend its psychological content and stigmatization which contributes to making workplace harassment an accepted practice and trivializing work-related violence.
Resumo:
A new method to characterize the long-time linear relaxation mechanisms of immiscible blends based on creep experiment was developed. Small-amplitude oscillatory shear and incomplete creep/recovery experiments were combined to characterize immiscible blends of polypropylene with dispersed droplets of polystyrene. An experimental protocol was defined such that the full creep compliance function could be obtained while minimizing morphological changes. Dynamic experiments were performed to characterize the shorter time relaxation processes, and creep and recovery measurements were used to detect the longer time portions of the relaxation spectra. Extended retardation and relaxation spectra were constructed by combining these data. It was found that using this technique, very long-time relaxation peaks which were inaccessible with dynamic experiments alone could be detected. (C) 2012 The Society of Rheology. [http://dx.doi.org/10.1122/1.4720081]
Resumo:
This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.
Resumo:
We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.
Resumo:
We give a description of delta-derivations of (n + 1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial delta-derivations of Filippov algebras and show that there are no non-trivial delta-derivations of the simple ternary Mal'tsev algebra M-8.
Resumo:
We use computer algebra to study polynomial identities for the trilinear operation [a, b, c] = abc - acb - bac + bca + cab - cba in the free associative algebra. It is known that [a, b, c] satisfies the alternating property in degree 3, no new identities in degree 5, a multilinear identity in degree 7 which alternates in 6 arguments, and no new identities in degree 9. We use the representation theory of the symmetric group to demonstrate the existence of new identities in degree 11. The only irreducible representations of dimension <400 with new identities correspond to partitions 2(5), 1 and 2(4), 1(3) and have dimensions 132 and 165. We construct an explicit new multilinear identity for partition 2(5), 1 and we demonstrate the existence of a new non-multilinear identity in which the underlying variables are permutations of a(2)b(2)c(2)d(2)e(2) f.
Resumo:
Bol algebras appear as the tangent algebra of Bol loops. A (left) Bol algebra is a vector space equipped with a binary operation [a, b] and a ternary operation {a, b, c} that satisfy five defining identities. If A is a left or right alternative algebra then A(b) is a Bol algebra, where [a, b] := ab - ba is the commutator and {a, b, c} := < b, c, a > is the Jordan associator. A special identity is an identity satisfied by Ab for all right alternative algebras A, but not satisfied by the free Bol algebra. We show that there are no special identities of degree <= 7, but there are special identities of degree 8. We obtain all the special identities of degree 8 in partition six-two. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In the paper, a complete description of the delta-derivations and the delta-superderivations of semisimple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic p not equal 2 is given. In particular, new examples of nontrivial (1/2)-derivations and odd (1/2)-superderivations are given that are not operators of right multiplication by an element of the superalgebra.
Resumo:
This paper is a continuation of Dokuchaev and Novikov (2010) [8]. The interaction between partial projective representations and twisted partial actions of groups considered in Dokuchaev and Novikov (2010) [8] is treated now in a categorical language. In the case of a finite group G, a structural result on the domains of factor sets of partial projective representations of G is obtained in terms of elementary partial actions. For arbitrary G we study the component pM'(G) of totally-defined factor sets in the partial Schur multiplier pM(G) using the structure of Exel's semigroup. A complete characterization of the elements of pM'(G) is obtained for algebraically closed fields. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Asteraceae, one of the largest families among angiosperms, is chemically characterised by the production of sesquiterpene lactones (SLs). A total of 1,111 SLs, which were extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of Asteraceae, were represented and registered in two dimensions in the SISTEMATX, an in-house software system, and were associated with their botanical sources. The respective 11 block of descriptors: Constitutional, Functional groups, BCUT, Atom-centred, 2D autocorrelations, Topological, Geometrical, RDF, 3D-MoRSE, GETAWAY and WHIM were used as input data to separate the botanical occurrences through self-organising maps. Maps that were generated with each descriptor divided the Asteraceae tribes, with total index values between 66.7% and 83.6%. The analysis of the results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes as well as between the Anthemideae and Inuleae tribes. Those observations are in agreement with systematic classifications that were proposed by Bremer, which use mainly morphological and molecular data, therefore chemical markers partially corroborate with these classifications. The results demonstrate that the atom-centred and RDF descriptors can be used as a tool for taxonomic classification in low hierarchical levels, such as tribes. Descriptors obtained through fragments or by the two-dimensional representation of the SL structures were sufficient to obtain significant results, and better results were not achieved by using descriptors derived from three-dimensional representations of SLs. Such models based on physico-chemical properties can project new design SLs, similar structures from literature or even unreported structures in two-dimensional chemical space. Therefore, the generated SOMs can predict the most probable tribe where a biologically active molecule can be found according Bremer classification.