12 resultados para Lie groups, Lie algebras, linear representations of SL3
em CaltechTHESIS
Resumo:
We classify the genuine ordinary mod p representations of the metaplectic group SL(2,F)-tilde, where F is a p-adic field, and compute its genuine mod p spherical and Iwahori Hecke algebras. The motivation is an interest in a possible correspondence between genuine mod p representations of SL(2,F)-tilde and mod p representations of the dual group PGL(2,F), so we also compare the two Hecke algebras to the mod p spherical and Iwahori Hecke algebras of PGL(2,F). We show that the genuine mod p spherical Hecke algebra of SL(2,F)-tilde is isomorphic to the mod p spherical Hecke algebra of PGL(2,F), and that one can choose an isomorphism which is compatible with a natural, though partial, correspondence of unramified ordinary representations via the Hecke action on their spherical vectors. We then show that the genuine mod p Iwahori Hecke algebra of SL(2,F)-tilde is a subquotient of the mod p Iwahori Hecke algebra of PGL(2,F), but that the two algebras are not isomorphic. This is in contrast to the situation in characteristic 0, where by work of Savin one can recover the local Shimura correspondence for representations generated by their Iwahori fixed vectors from an isomorphism of Iwahori Hecke algebras.
Resumo:
Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.
The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.
When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.
For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.
Resumo:
These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.
More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.
The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.
Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.
Resumo:
The synthesis of a sterically tailored ligand array (M)_2((C_5H_2-2-Si(CH_3)_3-4-C(CH_3)_3)S_2i(CH_3)_2]("M_2Bp") (M = Li, 16; K, 19) is described. Transmetallation of Li_2Bp with YCl_3(THF)_3 affords exclusively the C_2 symmetric product rac-[BpY(µ_2-Cl)_2Li(THF)_2], 20. A X-ray crystal structure of 20 has been determined; triclinic, P1, a= 13.110 (8), b = 17.163 (15), c = 20.623 (14) Å, α = 104.02 (7), β = 99.38 (5), γ = 100.24 (6)° , Z = 4, R = 0.056. Transmetallation of K_2Bp with YCl_3(THF)_3 affords the halide free complex rac-BpYCl, 23. The corresponding rac-BpLaCl, 28, is prepared in an anlogous manner. In all cases the achiral meso isomer is not obtained since only for the racemic isomers are the unfavorable steric interactions between the Si(CH3)_3 groups in the narrow portion of the [Cp-M'-Cp] wedge avoided. Alkylation of 20 or 23 with LiCH(Si(CH_3)_3)_2 affords rac-BpYCH(Si(CH_3)_3)_2, 26 in good yield. Alkylation of 28 with LiCH(Si(CH_3)_3)_2 affords rac-BpLaCH(Si(CH_3)_3)_2 29. Hydrogenation of 26 cleanly affords the bridging hydride species [BpY(µ_2-H)]_2, 27, as the homochiral (R,R) and (S,S) dimeric pairs. 26 is an efficient initiator for the polymerization of ethylene to high molecular weight linear polyethylene. 27 catalyzes the polymerization of propylene (25% v/v in methylcyclohexane) and neat samples of 1-butene, 1-pentene, 1-hexene to moderately high molecular weight polymers: polypropylene (M_n = 4,200, PDI 2.32, T_m 157 °C); poly-1-butene (M_n = 8,500, PDI 3.44, T_m 105 °C); poly-1-pentene (M_n = 20,000, PDI 1.99, T_m 73 °C); poly-1-hexene (M_n = 24,000, PDI 1.75, T_m < 25 °C). ^(13)C NMR spectra at the pentad analysis level indicates that the degree of isotacticity is 99% mmmm for all polymer samples. 27 is the first single component iso-specific α-olefin polymerization catalyst. The presumed origins of the high isospecificity are presented.
Resumo:
Long linear polymers that are end-functionalized with associative groups were studied as additives to hydrocarbon fluids to mitigate the fire hazard associated with the presence of mist in a crash scenario. These polymers were molecularly designed to overcome both the shear-degradation of long polymer chains in turbulent flows, and the chain collapse induced by the random placement of associative groups along polymer backbones. Architectures of associative groups on the polymer chain ends that were tested included clusters of self-associative carboxyl groups and pairs of hetero-complementary associative units.
Linear polymers with clusters of discrete numbers of carboxyl groups on their chain ends were investigated first: an innovative synthetic strategy was devised to achieve unprecedented backbone lengths and precise control of the number of carboxyl groups on chain ends (N). We found that a very narrow range of N allows the co-existence of sufficient end-association strength and polymer solubility in apolar media. Subsequent steady-flow rheological study on solution behavior of such soluble polymers in apolar media revealed that the end-association of very long chains in apolar media leads to the formation of flower-like micelles interconnected by bridging chains, which trap significant fraction of polymer chains into looped structures with low contribution to mist-control. The efficacy of very long 1,4-polybutadiene chains end-functionalized with clusters of four carboxyl groups as mist-control additives for jet fuel was further tested. In addition to being shear-resistant, the polymer was found capable of providing fire-protection to jet fuel at concentrations as low as 0.3wt%. We also found that this polymer has excellent solubility in jet fuel over a wide range of temperature (-30 to +70°C) and negligible interference with dewatering of jet fuel. It does not cause an adverse increase in viscosity at concentrations where mist-control efficacy exists.
Four pairs of hetero-complementary associative end-groups of varying strengths were subsequently investigated, in the hopes of achieving supramolecular aggregates with both mist-control ability and better utilization of polymer building blocks. Rheological study of solutions of the corresponding complementary associative polymer pairs in apolar media revealed the strength of complementary end-association required to achieve supramolecular aggregates capable of modulating rheological properties of the solution.
Both self-associating and complementary associating polymers have therefore been found to resist shear degradation. The successful strategy of building soluble, end-associative polymers with either self-associative or complementary associative groups will guide the next generation of mist-control technology.
Resumo:
This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.
In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.
Resumo:
The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.
The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.
The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.
The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.
Resumo:
The application of principles from evolutionary biology has long been used to gain new insights into the progression and clinical control of both infectious diseases and neoplasms. This iterative evolutionary process consists of expansion, diversification and selection within an adaptive landscape - species are subject to random genetic or epigenetic alterations that result in variations; genetic information is inherited through asexual reproduction and strong selective pressures such as therapeutic intervention can lead to the adaptation and expansion of resistant variants. These principles lie at the center of modern evolutionary synthesis and constitute the primary reasons for the development of resistance and therapeutic failure, but also provide a framework that allows for more effective control.
A model system for studying the evolution of resistance and control of therapeutic failure is the treatment of chronic HIV-1 infection by broadly neutralizing antibody (bNAb) therapy. A relatively recent discovery is that a minority of HIV-infected individuals can produce broadly neutralizing antibodies, that is, antibodies that inhibit infection by many strains of HIV. Passive transfer of human antibodies for the prevention and treatment of HIV-1 infection is increasingly being considered as an alternative to a conventional vaccine. However, recent evolution studies have uncovered that antibody treatment can exert selective pressure on virus that results in the rapid evolution of resistance. In certain cases, complete resistance to an antibody is conferred with a single amino acid substitution on the viral envelope of HIV.
The challenges in uncovering resistance mechanisms and designing effective combination strategies to control evolutionary processes and prevent therapeutic failure apply more broadly. We are motivated by two questions: Can we predict the evolution to resistance by characterizing genetic alterations that contribute to modified phenotypic fitness? Given an evolutionary landscape and a set of candidate therapies, can we computationally synthesize treatment strategies that control evolution to resistance?
To address the first question, we propose a mathematical framework to reason about evolutionary dynamics of HIV from computationally derived Gibbs energy fitness landscapes -- expanding the theoretical concept of an evolutionary landscape originally conceived by Sewall Wright to a computable, quantifiable, multidimensional, structurally defined fitness surface upon which to study complex HIV evolutionary outcomes.
To design combination treatment strategies that control evolution to resistance, we propose a methodology that solves for optimal combinations and concentrations of candidate therapies, and allows for the ability to quantifiably explore tradeoffs in treatment design, such as limiting the number of candidate therapies in the combination, dosage constraints and robustness to error. Our algorithm is based on the application of recent results in optimal control to an HIV evolutionary dynamics model and is constructed from experimentally derived antibody resistant phenotypes and their single antibody pharmacodynamics. This method represents a first step towards integrating principled engineering techniques with an experimentally based mathematical model in the rational design of combination treatment strategies and offers predictive understanding of the effects of combination therapies of evolutionary dynamics and resistance of HIV. Preliminary in vitro studies suggest that the combination antibody therapies predicted by our algorithm can neutralize heterogeneous viral populations despite containing resistant mutations.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
Combinatorial configurations known as t-designs are studied. These are pairs ˂B, ∏˃, where each element of B is a k-subset of ∏, and each t-design occurs in exactly λ elements of B, for some fixed integers k and λ. A theory of internal structure of t-designs is developed, and it is shown that any t-design can be decomposed in a natural fashion into a sequence of “simple” subdesigns. The theory is quite similar to the analysis of a group with respect to its normal subgroups, quotient groups, and homomorphisms. The analogous concepts of normal subdesigns, quotient designs, and design homomorphisms are all defined and used.
This structure theory is then applied to the class of t-designs whose automorphism groups are transitive on sets of t points. It is shown that if G is a permutation group transitive on sets of t letters and ф is any set of letters, then images of ф under G form a t-design whose parameters may be calculated from the group G. Such groups are discussed, especially for the case t = 2, and the normal structure of such designs is considered. Theorem 2.2.12 gives necessary and sufficient conditions for a t-design to be simple, purely in terms of the automorphism group of the design. Some constructions are given.
Finally, 2-designs with k = 3 and λ = 2 are considered in detail. These designs are first considered in general, with examples illustrating some of the configurations which can arise. Then an attempt is made to classify all such designs with an automorphism group transitive on pairs of points. Many cases are eliminated of reduced to combinations of Steiner triple systems. In the remaining cases, the simple designs are determined to consist of one infinite class and one exceptional case.
Resumo:
The present work deals with the problem of the interaction of the electromagnetic radiation with a statistical distribution of nonmagnetic dielectric particles immersed in an infinite homogeneous isotropic, non-magnetic medium. The wavelength of the incident radiation can be less, equal or greater than the linear dimension of a particle. The distance between any two particles is several wavelengths. A single particle in the absence of the others is assumed to scatter like a Rayleigh-Gans particle, i.e. interaction between the volume elements (self-interaction) is neglected. The interaction of the particles is taken into account (multiple scattering) and conditions are set up for the case of a lossless medium which guarantee that the multiple scattering contribution is more important than the self-interaction one. These conditions relate the wavelength λ and the linear dimensions of a particle a and of the region occupied by the particles D. It is found that for constant λ/a, D is proportional to λ and that |Δχ|, where Δχ is the difference in the dielectric susceptibilities between particle and medium, has to lie within a certain range.
The total scattering field is obtained as a series the several terms of which represent the corresponding multiple scattering orders. The first term is a single scattering term. The ensemble average of the total scattering intensity is then obtained as a series which does not involve terms due to products between terms of different orders. Thus the waves corresponding to different orders are independent and their Stokes parameters add.
The second and third order intensity terms are explicitly computed. The method used suggests a general approach for computing any order. It is found that in general the first order scattering intensity pattern (or phase function) peaks in the forward direction Θ = 0. The second order tends to smooth out the pattern giving a maximum in the Θ = π/2 direction and minima in the Θ = 0 , Θ = π directions. This ceases to be true if ka (where k = 2π/λ) becomes large (> 20). For large ka the forward direction is further enhanced. Similar features are expected from the higher orders even though the critical value of ka may increase with the order.
The first order polarization of the scattered wave is determined. The ensemble average of the Stokes parameters of the scattered wave is explicitly computed for the second order. A similar method can be applied for any order. It is found that the polarization of the scattered wave depends on the polarization of the incident wave. If the latter is elliptically polarized then the first order scattered wave is elliptically polarized, but in the Θ = π/2 direction is linearly polarized. If the incident wave is circularly polarized the first order scattered wave is elliptically polarized except for the directions Θ = π/2 (linearly polarized) and Θ = 0, π (circularly polarized). The handedness of the Θ = 0 wave is the same as that of the incident whereas the handedness of the Θ = π wave is opposite. If the incident wave is linearly polarized the first order scattered wave is also linearly polarized. The second order makes the total scattered wave to be elliptically polarized for any Θ no matter what the incident wave is. However, the handedness of the total scattered wave is not altered by the second order. Higher orders have similar effects as the second order.
If the medium is lossy the general approach employed for the lossless case is still valid. Only the algebra increases in complexity. It is found that the results of the lossless case are insensitive in the first order of kimD where kim = imaginary part of the wave vector k and D a linear characteristic dimension of the region occupied by the particles. Thus moderately extended regions and small losses make (kimD)2 ≪ 1 and the lossy character of the medium does not alter the results of the lossless case. In general the presence of the losses tends to reduce the forward scattering.