8 resultados para Lateral Inverse Proximity Effect
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The medial amygdaloid nucleus (MeA) is a sub-region of the amygdaloid complex that has been described as participating in food intake regulation. Serotonin has been known to play an important role in appetite and food intake regulation. Moreover, serotonin 5-HT2C and 5-HT1A receptors appear to be critical in food intake regulation. We investigated the role of the serotoninergic system in the MeA on feeding behavior regulation in rats. The current study examined the effects on feeding behavior regulation of the serotonin reuptake inhibitor, zimelidine, administered directly into the MeA or given systemically, and the serotoninergic receptors mediating its effect. Our results showed that microinjection of zimelidine (0.2, 2 and 20 nmol/100 nL) into the MeA evoked dose dependent hypophagic effects in fasted rats. The selective 5-HT1A receptor antagonist WAY-100635 (18.5 nmol/100 nL) or the 5-HT1B receptor antagonist SB-216641 microinjected bilaterally into the MeA did not change the hypophagic effect evoked by local MeA zimelidine treatment. However, microinjection of the selective 5-HT2C receptor antagonist SB-242084 (10 nmol/100 nL) was able to block the hypophagic effect of zimelidine. Moreover, microinjection of the 5-HT2C receptor antagonist SB-242084 into the MeA also blocked the hypophagic effect caused by zimelidine administered systemically. These results suggest that MeA 5-HT2C receptors modulate the hypophagic effect caused by local MeA administration as well as by systemic zimelidine administration. Furthermore, 5-HT2C into the MeA could be a potential target for systemic administration of zimelidine. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
BALDON, R. D. M., D. F. M. LOBATO, L. P. CARVALHO, P. Y. L. WUN, P. R. P. SANTIAGO, and F. V. SERRAO. Effect of Functional Stabilization Training on Lower Limb Biomechanics in Women. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 135-145, 2012. Purpose: This study aimed to verify the effects of functional stabilization training on lower limb kinematics, functional performance, and eccentric hip and knee torques. Methods: Twenty-eight women were divided into a training group (TG; n = 14), which carried out the functional stabilization training during 8 wk, and a control group (CG; n = 14), which carried out no physical training. The kinematic assessment of the lower limb was performed during a single-leg squat, and the functional performance was evaluated by way of the single-leg triple hop and the timed 6-m single-leg hop tests. The eccentric hip abductor, adductor, lateral rotator, medial rotator, and the knee flexor and extensor torques were measured using an isokinetic dynamometer. Results: After 8 wk, the TG significantly reduced the values for knee abduction (from -6.86 degrees to 1.49 degrees), pelvis depression (from -10.21 degrees to -7.86 degrees) and femur adduction (from 7.08 degrees to 5.19 degrees) as well as increasing the excursion of femur lateral rotation (from -0.55 degrees to -3.67 degrees). Similarly, the TG significantly increased the values of single-leg triple hop (from 3.52 to 3.92 m) and significantly decreased the values of timed 6-m single-leg hop tests (from 2.43 to 2.14 s). Finally, the TG significantly increased the eccentric hip abductor (from 1.31 to 1.45 N center dot m center dot kg(-1)), hip lateral rotator (from 0.75 to 0.91 N center dot m center dot kg(-1)), hip medial rotator (from 1.45 to 1.66 N center dot m center dot kg(-1)), knee flexor (from 1.43 to 1.55 N center dot m center dot kg(-1)), and knee extensor (from 3.46 to 4.40 N center dot m center dot kg(-1)) torques. Conclusions: Strengthening of the hip abductor and lateral rotator muscles associated with functional training improves dynamic lower limb alignment and increases the strength and functional performance.
Resumo:
Aim: To evaluate the effect of a space-maintaining device fixed to the lateral wall of the maxillary sinus after the elevation of the sinus mucosa on bone filling of the sinus cavity. Material and methods: Immediately after the elevation of the maxillary sinus Schneiderian membrane accomplished through lateral antrostomy in four monkeys, a titanium device was affixed to the lateral sinus wall protruding into the sinus cavity to maintain the mucosa elevated without the use of grafting material. The healing of the tissue around the implants was evaluated after 3 and 6 months. Ground sections were prepared and analyzed histologically. Results: The void under the elevated sinus membrane, originally filled with the blood clot, was reduced after 3 as well as after 6 months of healing of about 56% and 40.5%, respectively. In seven out of eight cases, the devices had perforated the sinus mucosa. The formation of mineralized bone and bone marrow amounted to about 42% and 69% after 3 and 6 months, respectively. The connective tissue represented about 53% and 23% of the newly formed tissue after 3 and 6 months, respectively. Conclusions: New bone formation was found below the devices. However, shrinkage of the newly formed tissue was observed both after 3 and 6 months of healing. Hence, the space-maintaining function of the devices used in the present study has to be questioned.
Resumo:
Objectives: To evaluate the effect of insertion torque on micromotion to a lateral force in three different implant designs. Material and methods: Thirty-six implants with identical thread design, but different cutting groove design were divided in three groups: (1) non-fluted (no cutting groove, solid screw-form); (2) fluted (901 cut at the apex, tap design); and (3) Blossomt (Patent pending) (non-fluted with engineered trimmed thread design). The implants were screwed into polyurethane foam blocks and the insertion torque was recorded after each turn of 901 by a digital torque gauge. Controlled lateral loads of 10N followed by increments of 5 up to 100N were sequentially applied by a digital force gauge on a titanium abutment. Statistical comparison was performed with two-way mixed model ANOVA that evaluated implant design group, linear effects of turns and displacement loads, and their interaction. Results: While insertion torque increased as a function of number of turns for each design, the slope and final values increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- standard deviation [SD] = 64.1 +/- 26.8, 139.4 +/- 17.2, and 205.23 +/- 24.3 Ncm, respectively). While a linear relationship between horizontal displacement and lateral force was observed for each design, the slope and maximal displacement increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- SD 530 +/- 57.7, 585.9 +/- 82.4, and 782.33 +/- 269.4 mm, respectively). There was negligible to moderate levels of association between insertion torque and lateral displacement in the Blossomt, fluted and non-fluted design groups, respectively. Conclusion: Insertion torque was reduced in implant macrodesigns that incorporated cutting edges, and lesser insertion torque was generally associated with decreased micromovement. However, insertion torque and micromotion were unrelated within implant designs, particularly for those designs showing the least insertion torque.
Resumo:
We have previously reported that noradrenaline (NA) microinjected into the lateral septal area (LSA) caused pressor and bradicardic responses that were mediated by vasopressin release into the circulation through the paraventricular nucleus of hypothalamus (PVN). Although PVN is the final structure involved in the cardiovascular responses caused by NA in the LSA, there is no evidence of direct connections between these areas, suggesting that some structures could be links in this pathway. In the present study, we verified the effect of reversible synaptic inactivation of the medial amygdaloid nucleus (MeA), bed nucleus of stria terminalis (BNST) or diagonal band of Broca (DBB) with Cobalt Chloride (CoCl2) on the cardiovascular response to NA microinjection into the LSA of unanesthetized rats. Male Wistar rats had guide cannulae implanted into the LSA and the MeA, BNST or DBB for drug administration, and a femoral catheter for blood pressure and heart rate recordings. Local microinjection of CoCl2 (1 mm in 100 nL) into the MeA significantly reduced the pressor and bradycardic responses caused by NA microinjection (21 nmol in 200 nL) into the LSA. In contrast, microinjection of CoCl2 into the BNST or DBB did not change the cardiovascular responses to NA into the LSA. The results indicate that synapses within the MeA, but not in BNST or DBB, are involved in the cardiovascular pathway activated by NA microinjection into the LSA.
Resumo:
We have previously reported that stimulation of alpha-1 adrenoceptors by noradrenaline (NA) injected into the lateral septal area (LSA) of anaesthetized rats causes pressor and bradycardic responses that are mediated by acute vasopressin release into the circulation through activation of the paraventricular nucleus (PVN). Although the PVN is the final structure of this pathway, the LSA has no direct connections with the PVN, suggesting that other structures may connect these areas. To address this issue, the present study employed c-Fos immunohistochemistry to investigate changes caused by NA microinjection into the LSA in neuronal activation in brain structures related to systemic vasopressin release. NA microinjected in the LSA caused pressor and bradycardic responses, which were blocked by intraseptal administration of alpha-1 adrenoceptor antagonist (WB4101, 10 nmol/200 nL) or systemic V-1 receptor antagonist (dTyr(CH2)5(Me)AVP, 50 mu g/kg). NA also increased c-Fos immunoreactivity in the prelimbic cortex (PL), infralimbic cortex (IL), dorsomedial periaqueductal gray (dmPAG), bed nucleus of the stria terminalis (BNST), PVN, and medial amygdala (MeA). No differences in the diagonal band of Broca, cingulate cortex, and dorsolateral periaqueductal gray (dlPAG) were found. Systemic administration of the vasopressin receptor antagonist dTyr AVP (CH2)5(Me) did not change the increase in c-Fos expression induced by intra-septal NA. This latter effect, however, was prevented by local injection of the alpha-1 adrenoceptor antagonist WB4101. These results suggest that areas such as the PL, IL, dmPAG, BNST, MeA, and PVN could be part of a circuit responsible for vasopressin release after activation of alpha-1 adrenoceptors in the LSA.
Resumo:
The lateral septal area (LSA) is a limbic structure involved in autonomic, neuroendocrine and behavioural responses. An inhibitory influence of the LSA on baroreflex activity has been reported; however, the local neurotransmitter involved in this modulation is still unclear. In the present study, we verified the involvement of local LSA adrenoceptors in modulating cardiac baroreflex activity in unanaesthetized rats. Bilateral microinjection of the selective a1-adrenoceptor antagonist WB4101 (10 nmol in a volume of 100 nl) into the LSA decreased baroreflex bradycardia evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Nevertheless, bilateral administration of the selective a2-adrenoceptor antagonist RX821002 (10 nmol in 100 nl) increased baroreflex tachycardia without affecting reflex bradycardia. Treatment of the LSA with a cocktail containing WB4101 and RX821002 decreased baroreflex bradycardia and increased reflex tachycardia. The non-selective beta-adrenoceptor antagonist propranolol (10 nmol in 100 nl) did not affect either reflex bradycardia or tachycardia. Microinjection of noradrenaline into the LSA increased reflex bradycardia and decreased the baroreflex tachycardic response, an opposite effect compared with those observed after double blockade of a1- and a2-adrenoceptors, and this effect of noradrenaline was blocked by local LSA pretreatment with the cocktail containing WB4101 and RX821002. The present results provide advances in our understanding of the baroreflex neural circuitry. Taken together, data suggest that local LSA a1- and a2-adrenoceptors modulate baroreflex control of heart rate differently. Data indicate that LSA a1-adrenoceptors exert a facilitatory modulation on baroreflex bradycardia, whereas local a2-adrenoceptors exert an inhibitory modulation on reflex tachycardia.
Resumo:
Study Objectives: To compare the components of the extracellular matrix in the lateral pharyngeal muscular wall in patients with and without obstructive sleep apnea (OSA). This may help to explain the origin of the increased collapsibility of the pharynx in patients with OSA. Design: Specimens from the superior pharyngeal constrictor muscle, obtained during pharyngeal surgeries, were evaluated using histochemical and immunohistochemical analyses to determine the fractional area of collagen types I and II, elastic fibers, versican, fibronectin, and matrix metalloproteinases 1 and 2 in the endomysium. Setting: Academic tertiary center. Patiens: A total of 51 nonobese adult patients, divided into 38 patients with OSA and 13 nonsnoring control subjects without OSA. Interventions: Postintervention study performed on tissues from patients after elective surgery. Measurements and Results: Pharyngeal muscles of patients with OSA had significantly more collagen type I than pharyngeal muscles in control subjects. Collagen type I was correlated positively and independently with age. The other tested components of the extracellular matrix did not differ significantly between groups. In a logistic regression, an additive effect of both the increase of collagen type I and the increase in age with the presence of OSA was observed (odds ratio (OR), 2.06; 95% confidence interval (CI), 1.17-3.63), when compared with the effect of increased age alone (OR, 1.11; 95% CI, 1.03-1.20). Conclusion: Collagen type I in the superior pharyngeal constrictor muscle was more prevalent in patients with OSA and also increased with age. It was hypothesized that this increase could delay contractile-relaxant responses in the superior pharyngeal constrictor muscle at the expiratory-inspiratory phase transition, thus increasing pharyngeal collapsibility.