37 resultados para LOW-FREQUENCY NOISE (LFN)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A model for computing the generation-recombination noise due to traps within the semiconductor film of fully depleted silicon-on-insulator MOSFET transistors is presented. Dependence of the corner frequency of the Lorentzian spectra on the gate voltage is addressed in this paper, which is different to the constant behavior expected for bulk transistors. The shift in the corner frequency makes the characterization process easier. It helps to identify the energy position, capture cross sections, and densities of the traps. This characterization task is carried out considering noise measurements of two different candidate structures for single-transistor dynamic random access memory devices.
Resumo:
We experimentally revisit a technique of low-cost multiparameter monitor for optical performance monitoring based on low frequency polarization modulation. A simplified calibration procedure, which significantly reduces the mathematical complexity and processing effort is proposed. Validation is achieved by carrying out relative optical power, wavelength, and differential group delay measurements. (C) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:18201824, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26956
Resumo:
Background: Myocardium damage during Chagas' disease results from the immunological imbalance between pro-and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis. Here, we investigated the role of IL-17 and regulatory T cell during human Chagas' disease. Methodology/Principal Findings: First, we observed CD4(+)IL-17(+) T cells in culture of peripheral blood mononuclear cells (PBMC) from Chagas' disease patients and we evaluated Th1, Th2, Th17 cytokine profile production in the PBMC cells from Chagas' disease patients (cardiomyopathy-free, and with mild, moderate or severe cardiomyopathy) cultured with T. cruzi antigen. Cultures of PBMC from patients with moderate and severe cardiomyopathy produced high levels of TNF-alpha, IFN-gamma and low levels of IL-10, when compared to mild cardiomyopathy or cardiomyopathy-free patients. Flow cytometry analysis showed higher CD4(+)IL-17(+) cells in PBMC cultured from patients without or with mild cardiomyopathy, in comparison to patients with moderate or severe cardiomyopathy. We then analyzed the presence and function of regulatory T cells in all patients. All groups of Chagas' disease patients presented the same frequency of CD4(+)CD25(+) regulatory T cells. However, CD4(+)CD25(+) T cells from patients with mild cardiomyopathy or cardiomyopathy-free showed higher suppressive activity than those with moderate and severe cardiomyopathy. IFN-gamma levels during chronic Chagas' disease are inversely correlated to the LVEF (P = 0.007, r = -0.614), while regulatory T cell activity is directly correlated with LVEF (P = 0.022, r = 0.500). Conclusion/Significance: These results indicate that reduced production of the cytokines IL-10 and IL-17 in association with high levels of IFN-gamma and TNF-alpha is correlated with the severity of the Chagas' disease cardiomyopathy, and the immunological imbalance observed may be causally related with deficient suppressor activity of regulatory T cells that controls myocardial inflammation.
Resumo:
Background: Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. Objectives: To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. Methods: 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. Results: The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Conclusion: Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.
Resumo:
Changes in the oceanic heat storage (HS) can reveal important evidences of climate variability related to ocean heat fluxes. Specifically, long-term variations in HS are a powerful indicator of climate change as HS represents the balance between the net surface energy flux and the poleward heat transported by the ocean currents. HS is estimated from sea surface height anomaly measured from the altimeters TOPEX/Poseidon and Jason 1 from 1993 to 2006. To characterize and validate the altimeter-based HS in the Atlantic, we used the data from the Pilot Research Moored Array in the Tropical Atlantic (PIRATA) array. Correlations and rms differences are used as statistical figures of merit to compare the HS estimates. The correlations range from 0.50 to 0.87 in the buoys located at the equator and at the southern part of the array. In that region the rms differences range between 0.40 and 0.51 x 10(9) Jm(-2). These results are encouraging and indicate that the altimeter has the precision necessary to capture the interannual trends in HS in the Atlantic. Albeit relatively small, salinity changes can also have an effect on the sea surface height anomaly. To account for this effect, NCEP/GODAS reanalysis data are used to estimate the haline contraction. To understand which dynamical processes are involved in the HS variability, the total signal is decomposed into nonpropagating basin-scale and seasonal (HS(l)) planetary waves, mesoscale eddies, and small-scale residual components. In general, HS(l) is the dominant signal in the tropical region. Results show a warming trend of HS(l) in the past 13 years almost all over the Atlantic basin with the most prominent slopes found at high latitudes. Positive interannual trends are found in the halosteric component at high latitudes of the South Atlantic and near the Labrador Sea. This could be an indication that the salinity anomaly increased in the upper layers during this period. The dynamics of the South Atlantic subtropical gyre could also be subject to low-frequency changes caused by a trend in the halosteric component on each side of the South Atlantic Current.
Resumo:
A simple and scalable procedure was used to obtain thin, stable, homogeneous, and easy-to-handle films composed of silicone derived from dimethicones containing dispersed hydrotalcite-type materials previously organo-modified with amino acids. The absence of the typical X-ray pattern of the bioinorganic LDH filler suggested an exfoliation process that was further indirectly evidenced by a drastic change in the rheological behavior, which turned from a quasi-Newtonian behavior for the silicone free of LDH filler to an extensive developed gel-like structure for the nanocomposite derivatives. Visualized by the shear-thinning exponent of the complex viscosity in the low-frequency range, the percolation threshold was evident for filler loading as low as <5 w/W%, suggesting the presence of a largely developed interface between the filler and the polymer. The increase of more than one order of magnitude in viscosity was explained by the rather strong attrition phenomenon between the tethered amino acid anions and the silicone chains. UVB radiation absorption profiles make such bioinorganic polymer nanocomposites potentially applicable in skin protection. Thermo-gravimetric analysis revealed significant improvement in the thermal stability, especially in the final step of the polymer combustion, thus underlining the role of the hybrid material as a thermal retardant agent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Intra-and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton-and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's F-S parameters. In addition, high values of haplotype diversity ((H) over cap) and low values of nucleotide diversity (pi), combined with a high number of low frequency haplotypes and values of theta(pi)<theta(W), suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.
Resumo:
We performed laboratory experiments to investigate the sensitivity of the Spectral Induced Polarization (SIP) method to toluene contamination in clayey soils. We used mixtures of quartzitic sand and montmorillonite as soil samples, artificially contaminated with varying amounts of toluene. Care was taken to quantify the experimental uncertainty resulting from packing since such effects must be quantified if variations in SIP signatures between samples are to be reliably interpreted in terms of the effects of hydrocarbon concentration. The SIP response of all samples following addition of toluene was monitored for a period of 40 days following sample preparation. Stepwise regression was used to examine the statistical significance of correlations between (i) clay content and (ii) toluene concentration and SIP parameters. Both single-frequency real and imaginary conductivity measurements, along with the integral chargeability, normalized chargeability, DC conductivity and time constant obtained from a Debye decomposition fitting, were examined in this regression analysis. The SIP measurements show a clear time dependence following sample preparation, indicating that samples containing toluene may take significant time to reach an equilibrium electrical response. SIP measurements are significantly related to toluene content shortly after sample preparation, when the expected dependence of SIP on clay concentration is apparently suppressed. However, for the state of electrical equilibrium after 40 days (interpreted to indicate surface chemistry at equilibrium) there is no significant relation between SIP measurements and toluene content; instead SIP measurements are then significantly correlated with clay concentration. The total chargeability, normalized chargeability and relaxation time obtained from the Debye decomposition show no correlation with toluene content, indicating that this procedure, which likely integrates over multiple mechanisms, may not be suitable for understanding relationships between SIP and hydrocarbon contamination. We find only small low-frequency polarization signals observed in relation to toluene concentration (2 mrad at 0.01 Hz), which initially decreases the interfacial polarization. Unlike earlier works, our results do not support the use of the SIP method as a tool for monitoring toluene contamination in clay soils.
Resumo:
Nuclear abnormalities in erythrocytes (NAE) were taken as biomarkers in the catfish Cathorops spixii (Ariidae) sampled in an estuary little affected by human activity (Cananeia) and in three regions (Santos Channel: SC, Santos Bay: SB and Sao Vicente Channel: SVC) of the Santos-Sao Vicente estuary impacted by various anthropogenic activities. Increases in NAE were observed in fish from SC and SVC sampled in the summer period as compared with specimens from the Cananeia estuary. These results suggest the presence of genotoxic compounds in these regions. However, the absence of significant differences in micronuclei frequency reflects slight mutagenic effects in these individuals. It is possible that the lower NAE frequency in specimens from SB might be associated with the greater remobilization and dilution of chemicals in this region. The low frequency of NAE in C. spixii from the Cananeia estuary is in accordance with the slight anthropogenic influence in this system, and may be suggestive of the absence of genotoxic and mutagenic effects in these organisms.
Resumo:
Objectives: The majority of individuals who survive a stroke are disabled because of persisting neurological impairments. The objective of this study was to evaluate the efficacy of subcutaneous electrical stimulation of the scalp in spontaneous functional recovery of patients with chronic ischemic stroke, by evaluating clinical, neurological, and functional findings. Subjects and methods: Sixty-two (62) subjects who were at least 18 months postdiagnosis of ischemic stroke were randomized to receive 10 sessions of placebo or active low-frequency electrical stimulation (2/100 Hz) using subcutaneous acupuncture needles over the scalp. Functional and neurological evaluations were indexed by the Barthel, Rankin, and National Institutes of Health Stroke Scale (NIHSS). Results: Results show that there was a significant difference in functional improvement between the sham and active group as indexed by NIHSS scale. The active group had a larger functional improvement after 10 sessions of scalp electrical acupuncture. The other two functional scales (Rankin and Barthel) failed to show significant differences between the two treatment groups. Conclusions: These results support further testing of scalp electrical acupuncture for the treatment of stroke as well further mechanistic studies to understand mechanisms associated with the observed improvement. Further studies need to consider longer follow-up assessments to investigate potential functional changes associated with electrical acupuncture.
Resumo:
Introduction. Tricuspid regurgitation (TR) is the most commonly valvular dysfunction found after heart transplantation (HTx). It may be related to endomyocardial biopsy (EMB) performed for allograft rejection surveillance. Objective. This investigation evaluated the presence of tricuspid valve tissue fragments obtained during routine EMB performed after HTx and its possible effect on short-term and long-term hemodynamic status. Method. This single-center review included prospectively collected and retrospectively analyzed data. From 1985 to 2010, 417 patients underwent 3550 EMB after HTx. All myocardial specimens were reviewed to identify the presence of tricuspid valve tissue by 2 observers initially and in doubtful cases by a third observer. The echocardiographic and hemodynamic parameters were only considered for valvular functional damage analysis in cases of tricuspid tissue inadvertently removed during EMB. Results. The 417 HTx patients to 3550 EMB, including 17,550 myocardial specimens. Tricuspid valve tissue was observed in 12 (2.9%) patients corresponding to 0.07% of the removed fragments. The echocardiographic and hemodynamic parameters of these patients before versus after the biopsy showed increased TR in 2 cases (2/12; 16.7%) quantified as moderate without progression in the long term. Only the right atrial pressure showed a significant increase (P = .0420) after tricuspid injury; however, the worsening of the functional class was not significant enough in any of the subjects. Thus, surgical intervention was not required. Conclusions. Histological evidence of chordal tissue in EMB specimens is a real-world problem of relatively low frequency. Traumatic tricuspid valve injury due to EMB rarely leads to severe valvular regurgitation; only a minority of patients develop significant clinical symptoms. Hemodynamic and echocardiographic alterations are also less often observed in most patients.
Resumo:
The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/mu L), the nicotinic agonist nicotine (NIC; 320 nmol/mu L), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.
Resumo:
Dettoni JL, Consolim-Colombo FM, Drager LF, Rubira MC, de Souza SB, Irigoyen MC, Mostarda C, Borile S, Krieger EM, Moreno H Jr, Lorenzi-Filho G. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J Appl Physiol 113: 232-236, 2012. First published April 26, 2012; doi: 10.1152/japplphysiol.01604.2011.-Sleep deprivation is common in Western societies and is associated with increased cardiovascular morbidity and mortality in epidemiological studies. However, the effects of partial sleep deprivation on the cardiovascular system are poorly understood. In the present study, we evaluated 13 healthy male volunteers (age: 31 +/- 2 yr) monitoring sleep diary and wrist actigraphy during their daily routine for 12 nights. The subjects were randomized and crossover to 5 nights of control sleep (>7 h) or 5 nights of partial sleep deprivation (<5 h), interposed by 2 nights of unrestricted sleep. At the end of control and partial sleep deprivation periods, heart rate variability (HRV), blood pressure variability (BPV), serum norepinephrine, and venous endothelial function (dorsal hand vein technique) were measured at rest in a supine position. The subjects slept 8.0 +/- 0.5 and 4.5 +/- 0.3 h during control and partial sleep deprivation periods, respectively (P < 0.01). Compared with control, sleep deprivation caused significant increase in sympathetic activity as evidenced by increase in percent low-frequency (50 +/- 15 vs. 59 +/- 8) and a decrease in percent high-frequency (50 +/- 10 vs. 41 +/- 8) components of HRV, increase in low-frequency band of BPV, and increase in serum norepinephrine (119 +/- 46 vs. 162 +/- 58 ng/ml), as well as a reduction in maximum endothelial dependent venodilatation (100 +/- 22 vs. 41 +/- 20%; P < 0.05 for all comparisons). In conclusion, 5 nights of partial sleep deprivation is sufficient to cause significant increase in sympathetic activity and venous endothelial dysfunction. These results may help to explain the association between short sleep and increased cardiovascular risk in epidemiological studies.
Resumo:
De Angelis K, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 302: R950-R957, 2012. First published February 8, 2012; doi: 10.1152/ajpregu.00450.2011.-Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 +/- 2 and F60: 118 +/- 2 mmHg) and dark periods (F15: 136 +/- 4 and F60: 136 +/- 5 mmHg) compared with controls (light: 111 +/- 2 and dark: 117 +/- 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.
Resumo:
Low-frequency repetitive transcranial magnetic stimulation (rTMS) of the unaffected hemisphere can enhance function of the paretic hand in patients with mild motor impairment. Effects of low-frequency rTMS to the contralesional motor cortex at an early stage of mild to severe hemiparesis after stroke are unknown. In this pilot, randomized, double-blind clinical trial we compared the effects of low-frequency rTMS or sham rTMS as add-on therapies to outpatient customary rehabilitation, in 30 patients within 5-45 days after ischemic stroke, and mild to severe hand paresis. The primary feasibility outcome was compliance with the interventions. The primary safety outcome was the proportion of intervention-related adverse events. Performance of the paretic hand in the Jebsen-Taylor test and pinch strength were secondary outcomes. Outcomes were assessed at baseline, after ten sessions of treatment administered over 2 weeks and at 1 month after end of treatment. Baseline clinical features were comparable across groups. For the primary feasibility outcome, compliance with treatment was 100% in the active group and 94% in the sham group. There were no serious intervention-related adverse events. There were significant improvements in performance in the Jebsen-Taylor test (mean, 12.3% 1 month after treatment) and pinch force (mean, 0.5 Newtons) in the active group, but not in the sham group. Low-frequency rTMS to the contralesional motor cortex early after stroke is feasible, safe and potentially effective to improve function of the paretic hand, in patients with mild to severe hemiparesis. These promising results will be valuable to design larger randomized clinical trials.