14 resultados para LINEAR GROWTH
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Although linear growth during childhood may be affected by early-life exposures, few studies have examined whether the effects of these exposures linger on during school age, particularly in low-and middle-income countries. Methods: We conducted a population-based longitudinal study of 256 children living in the Brazilian Amazon, aged 0.1 y to 5.5 y in 2003. Data regarding socioeconomic and maternal characteristics, infant feeding practices, morbidities, and birth weight and length were collected at baseline of the study (2003). Child body length/height was measured at baseline and at follow-up visits (in 2007 and 2009). Restricted cubic splines were used to construct average height-for-age Z score (HAZ) growth curves, yielding estimated HAZ differences among exposure categories at ages 0.5 y, 1 y, 2 y, 5 y, 7 y, and 10 y. Results: At baseline, median age was 2.6 y (interquartile range, 1.4 y-3.8 y), and mean HAZ was -0.53 (standard deviation, 1.15); 10.2% of children were stunted. In multivariable analysis, children in households above the household wealth index median were 0.30 Z taller at age 5 y (P = 0.017), and children whose families owned land were 0.34 Z taller by age 10 y (P = 0.023), when compared with poorer children. Mothers in the highest tertile for height had children whose HAZ were significantly higher compared with those of children from mothers in the lowest height tertile at all ages. Birth weight and length were positively related to linear growth throughout childhood; by age 10 y, children weighing >3500 g at birth were 0.31 Z taller than those weighing 2501 g to 3500 g (P = 0.022) at birth, and children measuring >= 51 cm at birth were 0.51 Z taller than those measuring <= 48 cm (P = 0.005). Conclusions: Results suggest socioeconomic background is a potentially modifiable predictor of linear growth during the school-aged years. Maternal height and child's anthropometric characteristics at birth are positively associated with HAZ up until child age 10 y.
Resumo:
We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (Lambda CDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes subdominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard Lambda CDM model; however, there is no dark energy. The model evolves between two limiting (early and late time) de Sitter regimes. All the stages are also discussed in terms of a scalar field description. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by rho(I)/rho(f) = (H-I/H-f)(2) similar to 10(122), a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Lambda growth index, gamma(Lambda) similar or equal to 6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a chi(2) statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.
Resumo:
In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.
Resumo:
Measurements on the growth process and placental development of the embryo and fetuses of Cavia porcellus were carried out using ultrasonography. Embryo, fetus, and placenta were monitored from Day 15 after mating day to the end of gestation. Based on linear and quadratic regressions, the following morphometric analysis showed a good indicator of the gestational age: placental diameter, biparietal diameter, renal length, and crown rump. The embryonic cardiac beat was first detected at an average of 22.5 days. The placental diameter showed constant increase from beginning of gestation then remained to term and presented a quadratic correlation with gestational age (r2 = 0.89). Mean placental diameter at the end of pregnancy was 3.5 ± 0.23 cm. By Day 30, it was possible to measure biparietal diameter, which followed a linear pattern of increase up to the end of gestation (r2 = 0.95). Mean biparietal diameter in the end of pregnancy was 1.94 ± 0.03 cm. Kidneys were firstly observed on Day 35 as hyperechoic structures without the distinction of medullar and cortical layers, thus the regression model equation between kidney length and gestational age presents a quadratic relationship (r2 = 0.7). The crown rump presented a simple linear growth, starting from 15 days of gestation, displaying a high correlation with the gestational age (r2 = 0.9). The offspring were born after an average gestation of 61.3 days. In this study, we conclude that biparietal diameter, placental diameter, and crown rump are adequate predictive parameters of gestational age in guinea pigs because they present high correlation index.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the reconstruction of the contamination history of a large South American industrial coastal area (Santos Estuary, Brazil) using linear alkylbenzenes (LABs). Three sediment cores were dated by (137)Cs Concentrations in surficial layers were comparable to the midrange concentrations reported for coastal sediments worldwide LAB concentrations increased towards the surface. indicating increased waste discharges into the estuary in recent decades. The highest concentration values occurred in the early 1970s, a time of intense industrial activity and marked population growth. The decreased LAB concentration, in the late 1970s was assumed to be the result of the world oil crisis Treatment of industrial effluents, which began in 1984, was represented by decreased LAB levels Microbial degradation of LABs may be more intense in the industrial area sediments. The results show that industrial and domestic waste discharges are a historical problem in the area. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The allometric growth of two groups of Nassarius vibex on beds of the bivalve Mytella charruana on the northern coast of the State of Sao Paulo, was evaluated between September 2006 and February 2007 in the bed on Camaroeiro Beach, and from March 2007 to June 2007 at Cidade Beach. The shells from Camaroeiro were longer and wider and had a smaller shell aperture than those from Cidade; a principal components analysis also confirmed different morphometric patterns between the areas. The allometric growth of the two groups showed great variation in the development of individuals. The increase of shell width and height in relation to shell length did not differ between the two areas. Shell aperture showed a contrasting growth pattern, with individuals from Camaroeiro having smaller apertures. The methodology based on Kullback-Leibler information theory and the multi-model inference showed, for N. vibex, that the classic linear allometric growth was not the most suitable explanation for the observed morphometric relationships. The patterns of relative growth observed in the two groups of N. vibex may be a consequence of different growth and variation rates, which modifies the development of the individuals. Other factors such as food resource availability and environmental parameters, which might also differ between the two areas, should also be considered.
Resumo:
The objective of this research was to use non-linear models to describe the growth pattern in Santa Ines sheep and to study the influence of environmental effects on curve parameters with the best-fit model. The models included the Brody, Richards, Von Bertalanffy, Gompertz, and Logistic models. We used 773 field reports on 162 animals ranging in age from 120 to 774 days, including 46 males and 116 females. The statistics used to evaluate the quality of fit included RMS (residual mean square), C% (percentage of convergence), R-2 (adjusted determination coefficient) and MAD (mean absolute deviation). Of the fixed effects studied, the only significant relationship was the effect of sex on parameter A. The Richards model was problematic during the process of convergence. Considering all studied criteria, the Logistic model presented the best fit in describing the growth pattern in Santa Ines sheep. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18-26A degrees C; L, 74-162 mu mol photons m(-2) s(-1); N, 40-80 mu mol L-1; P, 8-16 mu mol L-1; and M, 1-5 nmol L-1. The optimal conditions, which resulted in a maximum growth rate of a parts per thousand yen6.4% d(-1) from 7 to 10 days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 2(5) full factorial design) to be L, 74 mu mol photons m(-2) s(-1); T, 26A degrees C; N, 80 mu mol L-1; P, 8 mu mol L-1; and M, 1 nmol L-1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5-7.0% d(-1). The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X (L), (alpha = 0.05). On the other hand, the only significant quadratic term (X (Q)) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R (adjusted) (2) = 0.9540).
Resumo:
The growth parameters (growth rate, mu and lag time, lambda) of three different strains each of Salmonella enterica and Listeria monocytogenes in minimally processed lettuce (MPL) and their changes as a function of temperature were modeled. MPL were packed under modified atmosphere (5% O-2, 15% CO2 and 80% N-2), stored at 7-30 degrees C and samples collected at different time intervals were enumerated for S. enterica and L monocytogenes. Growth curves and equations describing the relationship between mu and lambda as a function of temperature were constructed using the DMFit Excel add-in and through linear regression, respectively. The predicted growth parameters for the pathogens observed in this study were compared to ComBase, Pathogen modeling program (PMP) and data from the literature. High R-2 values (0.97 and 0.93) were observed for average growth curves of different strains of pathogens grown on MPL Secondary models of mu and lambda for both pathogens followed a linear trend with high R2 values (>0.90). Root mean square error (RMSE) showed that the models obtained are accurate and suitable for modeling the growth of S. enterica and L monocytogenes in MP lettuce. The current study provides growth models for these foodborne pathogens that can be used in microbial risk assessment. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Insulin-like growth factor type 1 (IGF1) is a mediator of growth hormone (GH) action, and therefore, IGF1 is a candidate gene for recombinant human GH (rhGH) pharmacogenetics. Lower serum IGF1 levels were found in adults homozygous for 19 cytosine-adenosine (CA) repeats in the IGF1 promoter. The aim of this study was to evaluate the influence of (CA)n IGF1 polymorphism, alone or in combination with GH receptor (GHR)-exon 3 and -202 A/C insulin-like growth factor binding protein-3 (IGFBP3) polymorphisms, on the growth response to rhGH therapy in GH-deficient (GHD) patients. Eighty-four severe GHD patients were genotyped for (CA) n IGF1, -202 A/C IGFBP3 and GHR-exon 3 polymorphisms. Multiple linear regressions were performed to estimate the effect of each genotype, after adjustment for other influential factors. We assessed the influence of genotypes on the first year growth velocity (1st y GV) (n = 84) and adult height standard deviation score (SDS) adjusted for target-height SDS (AH-TH SDS) after rhGH therapy (n = 37). Homozygosity for the IGF1 19CA repeat allele was negatively correlated with 1st y GV (P = 0.03) and AH-TH SDS (P = 0.002) in multiple linear regression analysis. In conjunction with clinical factors, IGF1 and IGFBP3 genotypes explain 29% of the 1st y GV variability, whereas IGF1 and GHR polymorphisms explain 59% of final height-target-height SDS variability. We conclude that homozygosity for IGF1 (CA) 19 allele is associated with less favorable short-and long-term growth outcomes after rhGH treatment in patients with severe GHD. Furthermore, this polymorphism exhibits a non-additive interaction with -202 A/C IGFBP3 genotype on the 1st y GV and with GHR-exon 3 genotype on adult height. The Pharmacogenomics Journal (2012) 12, 439-445; doi:10.1038/tpj.2011.13; published online 5 April 2011
Resumo:
The objective of this study was to evaluate the genetic relationship between postweaning weight gain (PWG), heifer pregnancy (HP), scrotal circumference (SC) at 18 months of age, stayability at 6 years of age (STAY) and finishing visual score at 18 months of age (PREC), and to determine the potential of these traits as selection criteria for the genetic improvement of growth and reproduction in Nellore cattle. The HP was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 days. The STAY was defined as whether or not a cow calved every year up to the age of 6 years, given that she was provided the opportunity to breed. The Bayesian linear-threshold analysis via the Gibbs sampler was used to estimate the variance and covariance components applying a multitrait model. Posterior mean estimates of direct heritability were 0.15 +/- 0.00, 0.42 +/- 0.02, 0.49 +/- 0.01, 0.11 +/- 0.01 and 0.19 +/- 0.00 for PWG, HP, SC, STAY and PREC, respectively. The genetic correlations between traits ranged from 0.17 to 0.62. The traits studied generally have potential for use as selection criteria in genetic breeding programs. The genetic correlations between all traits show that selection for one of these traits does not imply the loss of the others.
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments