5 resultados para LIGHTWEIGHT AGGREGATE CONCRETE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB), lightweight aggregate (expanded vermiculite-term) and short fibers (polypropylene, glass and PVA), in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA) of construction and demolition wastes (CDW) on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.