6 resultados para Iron steel

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The distribution of delta ferrite fraction was measured with the magnetic method in specimens of different stainless steel compositions cast by the investment casting (lost wax) process. Ferrite fraction measurements published in the literature for stainless steel cast samples were added to the present work data, enabling an extensive analysis about practical methods to calculate delta ferrite fractions in stainless steel castings. Nineteen different versions of practical methods were formed using Schaeffler, DeLong, and Siewert diagrams and the nickel and chromium equivalent indexes suggested by several authors. These methods were evaluated by a detailed statistical analysis, showing that the Siewert diagram, including its equivalent indexes and iso-ferrite lines, gives the lowest relative errors between calculated and measured delta ferrite fractions. Although originally created for stainless steel welds, this diagram gives relative errors lower than those for the current ASTM standard method (800/A 800M-01), developed to predict ferrite fractions in stainless steel castings. Practical methods originated from a combination of different chromium/nickel equivalent indexes and the iso-ferrite lines from Schaeffler diagram give the lowest relative errors when compared with combinations using other iso-ferrite line diagrams. For the samples cast in the present work, an increase in cooling rate from 0.78 to 2.7 K/s caused a decrease in the delta ferrite fraction, but a statistical hypothesis test revealed that this effect is significant in only 50% of the samples that have ferrite in their microstructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion research in steels is one of the areas in which Mossbauer spectroscopy has become a required analytical technique, since it is a powerful tool for both identifying and quantifying distinctive phases (which contain Fe) with accuracy. In this manuscript, this technique was used to the study of corrosion resistance of plasma nitrided AISI 316L samples in the presence of chloride anions. Plasma nitriding has been carried out using dc glow-discharge, nitriding treatments, in medium of 80 vol.% H-2 and 20 vol.% N-2, at 673 K, and at different time intervals: 2, 4, and 7 h. Treated samples were characterized by means of phase composition and morphological analysis, and electrochemical tests in NaCl aerated solution in order to investigate the influence of treatment time on the microstructure and the corrosion resistance, proved by conversion electron Mossbauer spectroscopy (CEMS), glancing angle X-ray diffraction (GAXRD), scanning electron microscopy (SEM) and potentiodynamic polarization. A modified layer of about 8 gin was observed for all the nitrided samples, independently of the nitriding time. A metastable phase, S phase or gamma(N), was produced. It seems to be correlated with gamma`-Fe-4 N phase. If the gamma(N) fraction decreases, the gamma` fraction increases. The gamma(N) magnetic nature was analyzed. When the nitriding time increases, the results indicate that there is a significant reduction in the relative fraction of the magnetic gamma(N) (in) phase. In contrast, the paramagnetic gamma(N) (p) phase increases. The GAXRD analysis confirms the Mossbauer results, and it also indicates CrN traces for the sample nitrided for 7 h. Corrosion results demonstrate that time in the plasma nitriding treatment plays an important role for the corrosion resistance. The sample treated for 4 h showed the best result of corrosion resistance. It seems that the epsilon/gamma` fraction ratio plays an important role in thin corrosion resistance since this sample shows the maximum value for this ratio. (c) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a study on carbothermal reduction of iron ore made under the microwave field in equipment specially developed for this purpose. The equipment allows the control of radiated and reflected microwave power, and therefore measures the microwave energy actually applied to the load in the reduction process. It also allows performing energy balances and determining the reaction rate with high levels of confidence by simultaneously measuring temperature and mass of the material upon reduction with high reproducibility. We used a microwave generator of 2.45?GHz with variable power up to 3000?W. Self-reducing pellets under argon atmosphere, containing iron ore and petroleum coke, with 3.5?g of mass and 15?mm of diameter were declined. We obtained the kinetic curves of reduction of iron ore and of energy consumption to the process in the maximum electric field, in the maximum magnetic field and at different values of power/mass. The data allow analyzing how the microwave energy was actually consumed in the reduction of ore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interpretation of the effect of plastic deformation on the calculated excess loss component (anomalous-loss) supports the concept of loss separation. Magnetic losses and Barkhausen noise of nonoriented electrical steel sheets were measured on Epstein strips taken from a single coil of 0.8% Si nonoriented electrical steel. Sheets were extracted in the annealed condition, without any skin pass and with a grain size of 18 mu m. This material was cold rolled in order to obtain sets of samples with true strain from 2% up to 29%. X-ray diffraction was used to estimate the dislocation density. The analysis of magnetic properties was performed by Barkhausen noise measurements and also by analyzing the hysteresis loops obtained from Epstein frame measurements for different inductions and different frequencies (including the quasi-static regime for hysteresis loss measurements). These data allowed us to observe that most of the well known total loss increase with plastic deformation is due to an increase in the hysteresis loss component, while excess loss decreases to become negligible. This behavior can be explained if it is assumed that the plastic deformation lead to an increase in the number of domain walls per unit volume, thereby decreasing the excess loss. Barkhausen peak area increases with plastic deformation, reproducing results taken from samples of different silicon content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of different Cr and C contents upon the solidification interval of ASTM A352M-06 Grade CA6NM cast martensitic stainless steel has been investigated using computational thermodynamics, and checked against DTA measurements in samples taken from 13 large cast parts, in order to identify potential sources for improvement on the part castability. Calculation results suggest, indeed, that this would be the case for C: when its content increases from 0.018 to 0.044 wt.% C (within the allowed range in the alloy specification), the solidification intervals increases from 25 to 43 K, which suggests improved castability with decreasing C contents. DTA results, however, do not support this prediction, showing a fairly constant solidification interval around 23 K for all investigated samples. The results are discussed both regarding the impact in alloy processing and the fitness of the existing databases to reproduce experimental results in these limiting cases.