11 resultados para Integrable Equations in Physics

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new Skyrme-like model with fields taking values on the sphere S3 or, equivalently, on the group SU(2). The action of the model contains a quadratic kinetic term plus a quartic term which is the same as that of the Skyrme-Faddeev model. The novelty of the model is that it possess a first order Bogomolny type equation whose solutions automatically satisfy the second order Euler-Lagrange equations. It also possesses a lower bound on the static energy which is saturated by the Bogomolny solutions. Such Bogomolny equation is equivalent to the so-called force free equation used in plasma and solar Physics, and which possesses large classes of solutions. An old result due to Chandrasekhar prevents the existence of finite energy solutions for the force free equation on the entire three- dimensional space R3. We construct new exact finite energy solutions to the Bogomolny equations for the case where the space is the three-sphere S3, using toroidal like coordinates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1 + 1) dimensions, Chern-Simons theories in (2 + 1) dimensions, and non-abelian gauge theories in (2 + 1) and (3 + 1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3 + 1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences. DOI: 10.1103/PhysRevD.86.124047

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the radial expansion of cylindrical tubes in a hot QGP. These tubes are treated as perturbations in the energy density of the system which is formed in heavy ion collisions at RHIC and LHC. We start from the equations of relativistic hydrodynamics in two spatial dimensions and cylindrical symmetry and perform an expansion of these equations in a small parameter, conserving the nonlinearity of the hydrodynamical formalism. We consider both ideal and viscous fluids and the latter are studied with a relativistic Navier-Stokes equation. We use the equation of state of the MIT bag model. In the case of ideal fluids we obtain a breaking wave equation for the energy density fluctuation, which is then solved numerically. We also show that, under certain assumptions, perturbations in a relativistic viscous fluid are governed by the Burgers equation. We estimate the typical expansion time of the tubes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present results of the first Townsend coefficient (alpha) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the alpha parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550-1300 Td was very good, as demonstrated by the use of the Korff parameterization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper presents a historical study on the acceptance of Newton's corpuscular theory of light in the early eighteenth century. Isaac Newton first published his famous book Opticks in 1704. After its publication, it became quite popular and was an almost mandatory presence in cultural life of Enlightenment societies. However, Newton's optics did not become popular only via his own words and hands, but also via public lectures and short books with scientific contents devoted to general public (including women) that emerged in the period as a sort of entertainment business. Lectures and writers stressed the inductivist approach to the study of nature and presented Newton's ideas about optics as they were consensual among natural philosophers in the period. The historical case study presented in this paper illustrates relevant aspects of nature of science, which can be explored by students of physics on undergraduate level or in physics teacher training programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the existence of multi-bump solutions to a class of quasilinear Schrodinger equations in R. The proof relies on variational methods and combines some arguments given by del Pino and Felmer, Ding and Tanaka, and Sere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following a worldwide trend, the Initial Teacher Education (ITE) Programmes in Brazil are recently searching for ways of integrating practice into curriculum. It raises question about what practice must be integrated and how. Notably, university-based courses are disconnected from school and have low commitment with school issues (Zeichner, 2009).The student teacher induction into school daily life is not an easy task, mainly when the practitioners are transforming physics classroom practice toward an active learning. Drawing on cultural-historical framework (Wolff-Michael Roth & Lee, 2007; Vygotsky, 1978) this study addresses the articulation between Practicum in Physics Classes and the Hands-on Experiments (HoE) used throughout the Practicum. Although in a different level, both Practicum and HoE are linked with an idea of practice. Particularly, this study focuses on how HoE might foster student teachers' autonomy and agency in the Practicum. Data was gathered in the course Practice of Physics Teaching at University of São Paulo/Brazil in 2010; in a cohort of 60 student teachers doing a year-long Practicum in urban school in São Paulo city. Data was analysed using qualitative research methods (Roth, 2005), based on 14 interviews and video records of the student teacher preparing the HoE for Practicum we will present in general lines the role of HoE for student teacher autonomy.