5 resultados para Inclusion complexes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and beta-cyclodextrin (beta CD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HP beta CD and DAP/beta CD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HP beta CD and beta CD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HP beta CD, and consequently HP beta CD was more efficient in improving DAP solubility than beta CD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.
Resumo:
The adduct TRIMEB:Eu(BTA)(3)center dot 2H(2)O was prepared and primarily characterized by photoluminescence (PL), and compared with free Eu(BTA)(3)center dot 2H(2)O. Both spectra show the Eu3+ ion emission, with subtle differences between lines for the free and encapsulated complex. The temperature dependence and chemical stability were studied, taking into account (in the latter case) the PL changes with time. The use of this new material as the emissive layer in OLEDs was tested by its successful incorporation into a device, using a conductive polymer as host. The use of the TRIMEB adduct increased the stability of the device (as compared with the free Eu complex). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between beta-cyclodextrin (beta CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with beta CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the beta CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that beta CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 degrees C, pH 7.2) showed higher stability of peptide in presence of beta CD. This beta CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this investigation, the study of inclusion complexes formation between p-cymene and beta-cyclodextrin using the methods of physical mixture, paste (PC) and slurry (SC), was evaluated. The results of DSC and TG/DTG showed that the products prepared by PC and SC methods were able to incorporate greater amounts of p-cymene, as evidenced by the weight loss of 7.15 and 3.97%, respectively, which occurred between 120 and 270 A degrees C. SEM images showed decreased size of the household, especially in the SC product. The absorption bands in the IR spectrum, characteristic of p-cymene, were also identified in the preparations, indicating the presence of the compound in the complex.
Resumo:
Inclusion compounds of Al-quercetin and Al-catechin complexes with beta-cyclodextrin (beta CD) were investigated. The complex and the inclusion compound of quercetin are more effective DPPHaEuro cent scavengers than the corresponding catechin compounds and the inclusion does not compromise their scavenging abilities, with only a slight decrease in the EC50 values. This is in accordance with the electrochemical data, which revealed that the inclusion compounds have lower diffusion coefficients in aqueous solution than the non-included compounds. For the quercetin compounds, some spectroscopic properties were also addressed by means of UV-visible and NMR measurements in aqueous media.