3 resultados para Hydrology, Limnology and Potamology.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recently developed instruments, the Laser Optical Plankton Counter (LOPC) and the Zooscan, have been applied to study zooplankton biomass size spectra in tropical and subtropical marine ecosystems off Brazil. Both technologies rely on optical measurements of particles and may potentially be used in zooplankton monitoring programs. Vertical profiles of the LOPC installed in a 200 mu m ring net have been obtained from diverse environmental settings ranging from turbid and nearshore waters to oligotrophic open ocean conditions. Net samples were analyzed on the Zooscan and counted under a microscope. Particle biovolume in the study area estimated with the LOPC correlated with plankton displacement volume from the net samples, but there was no significant relationship between total areal zooplankton biomass determined with LOPC and the Zooscan. Apparently, normalized biomass size spectra (NBSS) of LOPC and Zooscan overlapped for particles in the size range of 500 to 1500 mu m in equivalent spherical diameter (ESD), especially at open ocean stations. However, the distribution of particles into five size classes was statistically different between both instruments at 24 of 28 stations. The disparities arise from unequal flow estimates, from different sampling efficiencies of LOPC tunnel and net for large and small particles, and possibly from the interference of non-zooplankton material in the LOPC signal. Ecosystem properties and technical differences therefore limit the direct comparability of the NBSS slopes obtained with both instruments during this study, and their results should be regarded as complementary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the factors controlling the variability in water-column respiration rates in Amazonian rivers. Our objectives were to determine the relationship between respiration rates and the in situ concentrations of the size classes of organic carbon (OC), and the biological source (C-3 and C-4 plants and phytoplankton) of organic matter (OM) supporting respiration. Respiration was measured along with OC size fractions and dissolved oxygen isotopes (delta O-18-O-2) in rivers of the central and southwestern Amazon Basin. Rates ranged from 0.034 mu mol O-2 L-1 h(-1) to 1.78 mu mol O-2 L-1 h(-1), and were four-fold higher in rivers with evidence of photosynthetic production (demonstrated by delta O-18-O-2<24.2 parts per thousand) as compared to rivers lacking such evidence (delta O-18-O-2>24.2 parts per thousand; 1.35 +/- 0.22 vs. 0.30 +/- 0.29 mu mol L-1 h(-1)). Rates were likely elevated in the former rivers, which were all sampled during low water, due to the stimulation of heterotrophic respiration via the supply of a labile, algal-derived substrate and/or the occurrence of autotrophic respiration. The organic composition of fine particulate OM (FPOM) of these rivers is consistent with a phytoplankton origin. Multiple linear regression analysis indicates that [FPOC], C:N-FPOC ratios, and [O-2] account for a high amount of the variability in respiration rates (r(2) = 0.80). Accordingly, FPOC derived from algal sources is associated with elevated respiration rates. The delta C-13 of respiration-derived CO2 indicates that the role of phytoplankton, C-3 plants, and C-4 grasses in supporting respiration is temporally and spatially variable. Future scaling work is needed to evaluate the significance of phytoplankton production to basin-wide carbon cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidisciplinary benthic studies are still hindered by the lack of a unique fixative that satisfactorily preserves morphology and DNA, and that is simultaneously adequate for ecological surveys. The objective of this study is to test the performance of five fixatives: formalin, ethanol, dimethylsulfoxide with EDTA and NaCl salts (DESS), methanol with acetic acid (METHAC), and ethanol with acetic acid (ETHAC), for the preservation of estuarine and exclusively marine nematode assemblages for morphological, molecular, and ecological studies. The presence of the stain rose bengal in each fixative was also evaluated in the yield of PCR reactions. For molecular analyses, one species of each habitat was considered. Results revealed that fixative performance for morphological studies is habitat-and species-dependent. For studies of estuarine sediment nematodes, we recommend the use of pure ethanol, because it caused little morphological distortion (<10% of the assemblage), preserved all the species for ecological studies, and yielded high quality DNA sequences. For studies of exclusively marine environments, METHAC or DESS are the most adequate. The first performed better for morphological and ecological surveys, whereas the second was more appropriate for molecular research. For ecological studies, DESS should be used in comparison with formalin, in order to cross check the results. Finally, staining of samples with rose bengal is not recommended, because it hindered DNA amplification regardless of the fixative used.