3 resultados para Hot-rolled steel
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Two Zircaloy 4-Ta alloys (14 and 55 wt.% Ta) were produced by arc-melting. The alloys were hot-rolled at 900 degrees C and heat-treated under argon atmosphere for 100 h at 700 degrees C. The alloys were analyzed by scanning electron microscopy and X-ray diffractometry. The microstructure of both rolled and heat-treated alloys is constituted of (beta Zr,Ta)-II Ta-rich precipitates dispersed in a (alpha Zr) matrix. Corrosion tests performed in boiling concentrated H2SO4 solutions showed that the Zircaloy 4-Ta alloys are more corrosion resistant than Zircaloy 4 and that the corrosion resistance increases with increasing Ta content. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels are candidates for applications in fusion power plants where micro structural long-term stability at temperatures of 650 degrees C to 700 degrees C are required. The microstructural stability of 80% cold-rolled reduced-activation ferritic-martensitic 9% Cr ODS-Eurofer steel was investigated within a wide range of temperatures (300 degrees C to 1350 degrees C). Fine oxide dispersion is very effective to prevent recrystallization in the ferritic phase field. The low recrystallized volume fraction (<0.1) found in samples annealed at 800 degrees C is associated with the nuclei found at prior grain boundaries and around coarse M23C6 particles. The combination of retarding effects such as Zener drag and concurrent recovery decrease the local stored energy and impede further growth of the recrystallization nuclei. Above 90 degrees C, martensitic transformation takes place with consequent coarsening. Significant changes in crystallographic texture are also reported.
Resumo:
The interpretation of the effect of plastic deformation on the calculated excess loss component (anomalous-loss) supports the concept of loss separation. Magnetic losses and Barkhausen noise of nonoriented electrical steel sheets were measured on Epstein strips taken from a single coil of 0.8% Si nonoriented electrical steel. Sheets were extracted in the annealed condition, without any skin pass and with a grain size of 18 mu m. This material was cold rolled in order to obtain sets of samples with true strain from 2% up to 29%. X-ray diffraction was used to estimate the dislocation density. The analysis of magnetic properties was performed by Barkhausen noise measurements and also by analyzing the hysteresis loops obtained from Epstein frame measurements for different inductions and different frequencies (including the quasi-static regime for hysteresis loss measurements). These data allowed us to observe that most of the well known total loss increase with plastic deformation is due to an increase in the hysteresis loss component, while excess loss decreases to become negligible. This behavior can be explained if it is assumed that the plastic deformation lead to an increase in the number of domain walls per unit volume, thereby decreasing the excess loss. Barkhausen peak area increases with plastic deformation, reproducing results taken from samples of different silicon content.