13 resultados para Host-defense
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Background: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. Conclusions/Significance: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.
Resumo:
Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Resumo:
Objective The influence of functional polymorphisms in the genes coding for mannose-binding lectin (MBL) and interleukin-1 receptor antagonist (IL-1ra) on recurrent vulvovaginal candidiasis (RVVC) were examined in an urban Brazilian population. Methods DNA was isolated from buccal swabs of 100 women with RVVC and 100 control women and tested by gene amplification for a single nucleotide polymorphism in codon 54 of the MBL2 gene and for a length polymorphism in intron 2 of the IL1RN gene. Genotype and allele frequencies were compared between groups. Results The frequency of the variant MBL2 B allele, associated with reduced circulating and vaginal MBL concentrations, was 27.0% in RVVC and 8.5% in control women (p < .0001). The MBL2 B, B genotype was present in 12% of RVVC patients and 1% of controls (p = .0025). The IL1RN 2 allele frequency, associated with the highest level of unopposed IL-1 beta activity, was 24.0% in RVVC and 23.4% in controls. The IL1RN genotype distribution was also similar in both groups. Conclusion Carriage of the MBL2 codon 54 polymorphism, but not the IL1RN length polymorphism, predisposes to RVVC in Brazilian women.
Resumo:
Our data suggest that impaired activity of myeloperoxidase (MPO) may play an important role in the dysfunction of neutrophils from hyperglycemic rats. Neutrophil biochemical pathways include the NADPH oxidase system and the MPO enzyme. They both play important role in the killing function of neutrophils. The effect of hyperglycemia on the activity of these enzymes and the consequences with regard to Candida albicans phagocytosis and the microbicidal property of rat peritoneal neutrophils is evaluated here. The NADPH oxidase system activity was measured using chemiluminescence and cytochrome C reduction assays. MPO activity was measured by monitoring HOCl production, and MPO protein expression was analysed using Western blot and immunofluorescence. C. albicans phagocytosis and death were evaluated by optical microscopy using the MayGrunwaldGiemsa staining method. ROS generation kinetic was slightly delayed in the diabetic group. MPO expression levels were higher in diabetic neutrophils; however, MPO activity was decreased in these same neutrophils compared with the controls. C. albicans phagocytosis and killing were lower in the diabetic neutrophils. Based on our experimental model, the phagocytic and killing functions of neutrophil phagocytosis are impaired in diabetic rats because of the decreased production of HOCl, highlighting the importance of MPO in the microbicidal function of neutrophils. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Objectives: Elderly individuals with Candida-related denture stomatitis (DS) present with a reduced defence against Candida albicans. This study evaluated levels of antimicrobial mediators in the elderly DS saliva and salivary neutrophils' activation characteristics compared with elderly and young without DS. Methods: Salivary peroxidases (SPO) and elastase activities (ELA), nitric oxide (NO), transforming growth factor beta (TGF-beta), IL-6 and CCL3 production were determined in saliva from elderly with or without DS, and young control individuals. TLR4, CXCR1, CD11b, CD16 and CD32 expression on salivary neutrophils were evaluated. Correlations between number and apoptosis rate of salivary neutrophils, enzymatic activities and cytokine levels were determined. Results: Elderly DS individuals exhibited the lowest SPO and ELA activities. Also, the activity of both enzymes was low in elderly without DS. Although both elderly groups showed higher salivary NO and TGF-beta levels compared to young control groups, elderly DS presented the highest salivary NO, TGF-beta, IL-6 and CCL3 levels. Decreased percentages of salivary TLR4(+) and CD16(+) neutrophils were detected in both elderly groups. Although these damages could influence the establishment and persistence of DS, the highest levels of salivary IL-6 and CCL3 in elderly DS could be preventing more serious complications.
Resumo:
NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases.
Resumo:
Background: Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. The typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. In this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution. Results: Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. The biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-alpha, IFN-gamma and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the mice Conclusions: Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.
Resumo:
Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.
Resumo:
BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-a and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host.
Resumo:
Neutrophils are pivotal effector cells of innate immunity representing the first line of defense against aggression. They are the first cells to arrive at the site of the aggression, where they can directly eliminate the invading microorganisms. Their activation and recruitment into peripheral tissues is indispensable for host defense. With aging, there are alterations of the receptor by driven functions of human neutrophils as a decrease in the functional changes in signaling elicited by specific receptors, as CXCR1. We investigated the activation of neutrophils from elderly after the cells were cultivated with CXCL8. Although, CXCL8 induced elastase (ELA) secretion, data showed neither myeloperoxidase (MPO) activity nor production of IL-6, IL-10, GM-CSF by neutrophils from elderly compared with young individuals. On the other hand, in the presence of only LPS or LPS associated with CXCL8 neutrophils from elderly individuals, there were significant levels of IL-6, IL-10, GM-CSF but not MPO. These results indicate that neutrophils from elderly do not respond to CXCL8 stimulus, but they are activated by LPS to produce cytokines. However, MPO activity from elderly individuals was not different in the presence or absence of LPS and CXCL8
Resumo:
Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.