28 resultados para High-fiber diet.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Type 2 diabetes mellitus implies deregulation of multiple metabolic processes, being the maintenance of glycemia one of the most important. Many genes are involved in the deregulation of this particular process. Therefore, the aim of this study was to evaluate gene expression of genes related to type 2 diabetes mellitus, in the liver and pancreas of rats with hyperglycemia induced by high fat diet along with a low single dose of streptozotocin. Ahsg and Ppargc1a genes were studied in liver, whereas Kcnj11 and Slc2a2 genes were analyzed in pancreas. For this purpose, 210-240 g female rats were fed a high fat diet or a control diet for three weeks. At day 14, animals fed with high fat diet were injected with a single low dose of streptozotocin (35 mg/kg) and the control group rats were injected only with the vehicle. Plasmatic glucose, triglycerides and total cholesterol levels were measured at the beginning, day 14 and end of treatment. Body weight was also measured. Once the treatment was complete, rats were appropriately euthanized and then, pancreas and liver were surgically removed and frozen in liquid nitrogen. Total RNA was isolated using TRIzol reagent, treated with DNase land reversely transcribed to cDNA. Gene expression analysis was performed using SYBR Green - Real time PCR and comparative Cq method, using three reference genes. Rats fed with high fat diet and treated with streptozotocin showed higher values of plasmatic glucose (17.09 +/- 0.43 vs. 5.91 +/- 0.29 mmol/L, p < 0.01) and a minor expression of Ppargc1a versus the control group (2-fold less expressed, p < 0.05) in liver. We conclude that repression of Ppargc1a gene may be an important process in the establishment of chronic hyperglycemia, probably through deregulation of hepatic gluconeogenesis. However, further studies need to be performed in order to clarify the role of Ppargc1a deregulation in liver glucose homeostasis.
Resumo:
A high-fat (HF) diet, the serotonergic system and stromal elements have all been implicated in colon carcinogenesis. We investigated whether the colonic serotonergic system could play a main role in the development of colonic dysplasia and stromal reactivity in carcinogen-treated rats under HF diet. For this, dimethylhydrazine-treated rats were fed with standard diet and a HF diet. Fat distribution was quantified by computerized tomography exam, serotonergic activity was analyzed by high-performance liquid chromatography, gene expression, and immunohistochemistry, which along with histopathological technique enabled us to enumerate dysplasia, microvessels density, cell proliferation and COX-2 expression. We found that the HF diet induced an increase in the amount of viscera! adipose tissue, even without expressive changes in the average body weight. This was correlated with a loss of serotonergic balance in colon tissue. Moreover, the HF diet promoted dysplasia and microvessel density in association with increased proliferation and COX-2 expression within pericryptal colonic stroma. Our current findings suggest that a HF diet promotes the enlargement of adipose tissue via loss of control in colon serotonergic activity, which enhances colonic dysplasia by supporting microvessel development. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study, we evaluated the effects of obesity and insulin resistance induced by a high-fat diet on prostate morphophysiology, focusing on cell proliferation, expression of androgen (AR) and estrogen receptors (ER) and proteins of the insulin signaling pathway. Adult male Wistar rats were fed a high-fat diet (20% fat) for 15 weeks, whereas control animals received a balanced diet (4% fat). Both groups were then divided and treated for 2 weeks with 1 mg/kg body weight/day of the aromatase inhibitor letrozole or vehicle only. The ventral prostate was analyzed with immunohistochemical, histopathological, stereological, and Western blotting methods. Obese rats showed insulin resistance, hyperinsulinemia, and reduced plasma testosterone levels. The incidence of prostatic intraepithelial neoplasia (PIN) was 2.7 times higher in obese rats and affected 0.4% of the gland compared with 0.1% PIN areas found in control rats. Obesity doubled cell proliferation in both prostate epithelium and stroma. AR content decreased in the prostate of obese rats and estrogen receptor beta (ER beta) increased in this group. Protein levels of insulin receptor substrate 1 and protein kinase B diminished in the obese group, whereas phosphatidylinositol 3-kinase (PI3K) increased significantly. Most structural changes observed in the prostate of obese rats normalized after letrozole treatment, except for increased stromal cell proliferation and ER beta expression, which might be associated with insulin resistance. This experimental model of obesity and insulin resistance induced by a high-fat diet increases cell proliferation in rat prostate. Such alterations are associated with decreased levels of AR and increased ER beta and PI3K proteins. This change can facilitate the establishment of proliferative lesions in rat prostate.
Resumo:
It is well established that the development of insulin resistance shows a temporal sequence in different organs and tissues. Moreover, considering that the main aspect of insulin resistance in liver is a process of glucose overproduction from gluconeogenesis, we investigated if this metabolic change also shows temporal sequence. For this purpose, a well-established experimental model of insulin resistance induced by high-fat diet (HFD) was used. The mice received HFD (HFD group) or standard diet (COG group) for 1, 7, 14 or 56?days. The HFD group showed increased (P?<?0.05 versus COG) epididymal, retroperitoneal and inguinal fat weight from days 1 to 56. In agreement with these results, the HFD group also showed higher body weight (P?<?0.05 versus COG) from days 7 to 56. Moreover, the changes induced by HFD on liver gluconeogenesis were progressive because the increment (P?<?0.05 versus COG) in glucose production from l-lactate, glycerol, l-alanine and l-glutamine occurred 7, 14, 56 and 56 days after the introduction of the HFD schedule, respectively. Furthermore, glycaemia and cholesterolemia increased (P?<?0.05 versus COG) 14?days after starting the HFD schedule. Taken together, the results suggest that the intensification of liver gluconeogenesis induced by an HFD is not a synchronous all-or-nothing process but is specific for each gluconeogenic substrate and is integrated in a temporal manner with the progressive augmentation of fasting glycaemia. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.
Resumo:
Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.
Resumo:
Abstract Background The aim of this study was to determine the effects of creatine supplementation on kidney function in resistance-trained individuals ingesting a high-protein diet. Methods A randomized, double-blind, placebo-controlled trial was performed. The participants were randomly allocated to receive either creatine (20 g/d for 5 d followed by 5 g/d throughout the trial) or placebo for 12 weeks. All of the participants were engaged in resistance training and consumed a high-protein diet (i.e., ≥ 1.2 g/Kg/d). Subjects were assessed at baseline (Pre) and after 12 weeks (Post). Glomerular filtration rate was measured by 51Cr-EDTA clearance. Additionally, blood samples and a 24-h urine collection were obtained for other kidney function assessments. Results No significant differences were observed for 51Cr-EDTA clearance throughout the trial (Creatine: Pre 101.42 ± 13.11, Post 108.78 ± 14.41 mL/min/1.73m2; Placebo: Pre 103.29 ± 17.64, Post 106.68 ± 16.05 mL/min/1.73m2; group x time interaction: F = 0.21, p = 0.64). Creatinine clearance, serum and urinary urea, electrolytes, proteinuria, and albuminuria remained virtually unchanged. Conclusions A 12-week creatine supplementation protocol did not affect kidney function in resistance-trained healthy individuals consuming a high-protein diet; thus reinforcing the safety of this dietary supplement. Trial registration ClinicalTrials.gov NCT01817673
Resumo:
As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity
Resumo:
A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.
Resumo:
Background: Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model. Methods: Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-alpha and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age. Results: MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-alpha were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 +/- 2, H: 42 +/- 2, C: 45 +/- 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%). Conclusions: MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
Resumo:
Aims: The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Main methods: Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.1 6%NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. Key findings: TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA. ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. Significance: High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.