4 resultados para Harvard University--Benefactors
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Pepperberg (The Alex studies: cognitive and communicative abilities of gray parrots. Harvard University Press, Cambridge;1999) showed that some of the complex cognitive capabilities found in primates are also present in psittacine birds. Through the replication of an experiment performed with cotton-top tamarins (Saguinus oedipus oedipus) by Hauser et al. (Anim Behav 57:565-582; 1999), we examined a blue-fronted parrot`s (Amazona aestiva) ability to generalize the solution of a particular problem in new but similar cases. Our results show that, at least when it comes to solving this particular problem, our parrot subject exhibited learning generalization capabilities resembling the tamarins`.
Resumo:
In this work, the effect of various casting solution salt dopants with similar cations, but different anions: (NaPO3)(6), Na2SO4, Na2CO3, NaCl, and NaF, on the morphology and performance of polyethersulfone ultrafiltration membranes was evaluated. The phase inversion process was used to produce all membranes using an 18% polyethersulfone in n-methylpyrrolidone casting solution and water as the non-solvent. Scanning electron microscopy (SEM) images of the membrane cross-section and surface pores were used to determine the specific anion effects on membrane morphology. The SEM images depicted significant changes to the membrane internal structure and pore size with respect to the type and concentration of the casting solution anion dopant. Membrane permeability, molecular weight cut-off, alginate retention, and susceptibility to fouling were evaluated using ultrapure water dead-end and ultrapure water, aqueous polyethylene glycol, aqueous sodium alginate, and natural surface water cross-flow filtration tests. Among the anions evaluated, hexametaphosphate doped at 1% w/w to the polymer resulted in the membrane with highest dead-end permeability at 490 LMH-bar (2- to 3-fold greater than the control), greatest alginate retention at 96.5%, and lowest susceptibility to fouling. The significant increase in membrane performance indicates that the hexametaphosphate anion has great potential to be used as a membrane casting solution dopant. It was also clearly demonstrated that membrane pore morphological characteristics can be effectively used to predict drinking water treatment performance. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.
Resumo:
Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.