2 resultados para Hand strength
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Resumo:
The objective of this study was to evaluate the influence of Er:YAG laser (lambda = 2.94 mu m) on microtensile bond strength (mu TBS) and superficial morphology of bovine dentin bleached with 16% carbamide peroxide. Forty bovine teeth blocks (7 x 3 x 3 mm(3)) were randomly assigned to four groups: G1- bleaching and Er:YAG irradiation with energy density of 25.56 J/cm(2) (focused mode); G2 - bleaching; G3 - no-bleaching and Er:YAG irradiation (25.56 J/cm(2)); G4 - control, non-treated. G1 and G2 were bleached with 16% carbamide peroxide for 6 h during 21 days. Afterwards, all blocks were abraded with 320 to 600-grit abrasive papers to obtain flat standardized dentin surfaces. G1 and G3 were Er:YAG irradiated. Blocks were immediately restored with 4-mm-high composite resin (Adper Single Bond 2, Z-250-3 M/ESPE). After 24 h, the restored blocks (n = 9) were serially sectioned and trimmed to an hour-glass shape of approximately 1 mm(2) at the bonded interface area, and tested in tension in a universal testing machine (1 mm/ min). Failure mode was determined at a magnification of 100x using a stereomicroscope. One block of each group was selected for scanning electron microscope (SEM) analysis. mu TBS data was analyzed by two-way ANOVA and Tukey test (alpha = 0.05). Mean bond strengths (SD) in MPa were: G1- 32.7 (5.9)(A); G2- 31.1 (6.3)(A); G3- 25.2 (8.3)(B); G4- 36.7 (9.9).(A) Groups with different uppercase letters were significantly different from each other (p < .05). Enamel bleaching procedure did not affect mu TBS values for dentin adhesion. Er:YAG laser irradiation with 25.56 J/cm(2) prior to adhesive procedure of bleached teeth did not affect mu TBS at dentin and promoted a dentin surface with no smear layer and opened dentin tubules observed under SEM. On the other hand, Er:YAG laser irradiation prior to adhesive procedure of non-bleached surface impaired mu TBS compared to the control group.