10 resultados para Hall Effect Sensor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau sigma(xy) = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.
Resumo:
We study the spin Hall conductance fluctuations in ballistic mesoscopic systems. We obtain universal expressions for the spin and charge current fluctuations, cast in terms of current-current autocorrelation functions. We show that the latter are conveniently parametrized as deformed Lorentzian shape lines, functions of an external applied magnetic field and the Fermi energy. We find that the charge current fluctuations show quite unique statistical features at the symplectic-unitary crossover regime. Our findings are based on an evaluation of the generalized transmission coefficients correlation functions within the stub model and are amenable to experimental test. DOI: 10.1103/PhysRevB.86.235112
Resumo:
Polarized photoluminescence from weakly coupled random multiple well quasi-three-dimensional electron system is studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state are observed. Photoluminescence associated with these states exhibits features caused by finite-size skyrmions: dramatic reduction of the electron spin polarization when the magnetic field is increased past the filling factor nu = 1. The effective skyrmion size is larger than in two-dimensional electron systems.
Resumo:
Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor nu = 0.
Resumo:
This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Resumo:
The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed.
Resumo:
This work deals with MEH-PPV thin films to be used as gamma radiation sensors. The polymer thin films with two different thicknesses (30 and 100 nm) were irradiated at room temperature with different gamma radiation doses (up to 25 kGy). Optical properties of the material were investigated with FTIR and UV-Vis absorption spectroscopy. Results show that gamma radiation does not degrade substantially the thin-film material, suggesting that a crosslink effect may be occurring. The characteristic absorption peak of MEH-PPV, around 500 nm is shifted to shorter wavelengths with the increase of gamma radiation doses for both thicknesses samples. The 30-nm-thick samples showed a larger variation absorbance at a specific wavelength and a larger peak shift. These results indicate their potential for use in monitoring the radiation doses used on the sterilization of health care products.
Resumo:
We aim in this study to characterize the effect of cations and polycations on the formation of hybrid bilayer membranes (HBMs), especially those that mimic the inner mitochondrial membrane (IMM), with a proper composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) adsorbed on an alkanethiol monolayer. HBMs are versatile membrane mimetics that show promising results in sensor technology. Its formation depends on the fusion of vesicles on hydrophobic surfaces, a process that is not well understood at the molecular level. Our results showed to which extend and in which condition the presence of cations and polycations facilitate the formation of HBMs. The required time for lipid layer formation was reduced several times and the lipid layer reaches the expected thickness of 19.5 +/- 1.8 angstrom, in contrast to only 2 +/- 1.5 angstrom usually observed in the absence of cations. In the presence of specific concentrations of spermine and Ca2+ the amount of adsorbed phospholipids on the thiol layer increased nearly 70% compared to that observed when Na+ was used at concentrations 10 times higher. Divalent cations and polycations adsorb specifically on the lipid headgroups destabilizing the hydration forces, facilitating the process of vesicle fusion and formation of lipid monolayers. The concepts and conditions described in the manuscript will certainly help the development of the field of membrane biosensors. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vanadium/titanium mixed oxide films were produced using the sol-gel route. The structural investigation revealed that increased TiO2 molar ratio in the mixed oxide disturbs the V2O5 crystalline structure and makes it amorphous. This blocks the TiO2 phase transformation, so TiO2 stabilizes in the anatase phase. In addition the surface of the sample always presents larger amounts of TiO2 than expected, revealing a concentration gradient along the growth direction. For increased TiO2 molar ratios the roughness of the surface is reduced. Ion sensors were fabricated using the extended gate field effect transistor configuration. The obtained sensitivities varied in the range of 58 mV/pH down to 15 mV/pH according to the composition and morphology of the surface of the samples. Low TiO2 amounts presented better sensing properties that might be related to the cracked and inhomogeneous surfaces. Rising the TiO2 quantity in the films produces homogeneous surfaces but diminishes their sensitivities. Thus, the present paper reveals that the compositional and structural aspects change the surface morphology and electrical properties accounting for the final ion sensing properties of the V2O5/TiO2 films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053206jes] All rights reserved.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.