22 resultados para HOLE MIGRATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The influence of layer-by-layer films of polyaniline and Ni-tetrasulfonated phthalocyanine (PANI/Ni-TS-Pc) on the electrical performance of polymeric light-emitting diodes (PLED) made from (poly[2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene]) (MEH-PPV) is investigated by using current versus voltage measurements and impedance spectroscopy. The PLED is composed by a thin layer of MEH-PPV sandwiched between indium tin oxide (ITO) and aluminum electrodes, resulting in the device structure ITO/(PANI/Ni-TS-Pc)(n)/MEH-PPV/Al, where n stands for the number of PANI/Ni-TS-Pc bilayers. The deposition of PANI/Ni-TS-Pc leads to a decrease in the driving voltage of the PLEDs, which reaches a minimum when n = 5 bilayers. In addition, impedance spectroscopy data reveal that the PLED impedance decreases as more PANI/Ni-TS-Pc bilayers are deposited. The PLED structure is further described by an equivalent circuit composed by two R-C combinations, one for the bulk and other for the interface components, in series with a resistance originated in the ITO contact. From the impedance curves, the values for each circuit element is determined and it is found that both, bulk and interface resistances are decreased upon PANI/Ni-TS-Pc deposition. The results indicate that PANI/NiTS-Pc films reduce the contact resistance at ITO/MEH-PPV interface, and for that reason improve the hole-injection within the PLED structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Portunid crabs are an important resource in estuaries, and require appropriate management to guarantee their long-term availability. We investigated the population dynamics and reproduction of Callinectes danae in the Estuarine-Bay Complex of Sao Vicente, Sao Paulo, Brazil, to provide basic biological information for public policies for the management of this fishery. Monthly samples were obtained from March 2007 to February 2008 on eight transects, four in the estuary and four in the bay. A total of 2261 specimens (403 males, 1288 females, of which 570 were ovigerous) were collected. Males were significantly larger than females, and the size-frequency distribution was unimodal for males, females and ovigerous females. The sex ratio was nearly always skewed toward females (M:F - 1:4.6). C. danae showed seasonal-continuous reproduction, with high reproductive activity in the warmer season. C. danae breeds in the estuarine-bay complex, with males and juvenile females concentrated in the estuary. After copulation, fertilized females migrate to the estuary entrance and the bay, where ovigerous females are commonly found spawning in high-salinity areas. Therefore, to manage this important economic resource, both the estuary and the bay should be considered for protection, but special attention should be given to the estuary entrance during the summer months, when ovigerous females concentrate.
Resumo:
We consider a solution of three dimensional New Massive Gravity with a negative cosmological constant and use the AdS/CTF correspondence to inquire about the equivalent two dimensional model at the boundary. We conclude that there should be a close relation of the theory with the Korteweg-de Vries equation. (C) 2012 Elsevier B.V..All rights reserved.
Resumo:
The transport properties of the two-dimensional system in HgTe-based quantum wells containing simultaneously electrons and holes of low densities are examined. The Hall resistance, as a function of perpendicular magnetic field, reveals an unconventional behavior, different from the classical N-shaped dependence typical for bipolar systems with electron-hole asymmetry. The quantum features of magnetotransport are explained by means of numerical calculation of the Landau level spectrum based on the Kane Hamiltonian. The origin of the quantum Hall plateau sigma(xy) = 0 near the charge neutrality point is attributed to special features of Landau quantization in our system.
Resumo:
Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor nu = 0.
Resumo:
At times in clinical neurology, the identification of a subtle clinical or radiological sign can lead to prompt diagnosis of a very rare or difficult case. We report on a patient who presented with untreatable headache and unilateral ptosis. Computed tomography (CT) scan of the head did not reveal any structural cause. Magnetic resonance angiogram showed absence of left internal carotid artery, which was eventually confirmed by a catheter angiography. Reviewing the case, it emerged that a feature on the initial CT scan "bone window" would have confirmed the diagnosis, had it been searched for: the underdeveloped carotid canal, which is a consequence and a marker of internal carotid artery agenesis.
Resumo:
Albatrosses and petrels (Procellariiformes) are migratory oceanic birds of considerable conservational interest. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed in the subcutaneous fat, liver and muscle of 100 birds belonging to eight species of Procellariiformes collected during their migration period in southern Brazil, one of the most important feeding areas for these species. Although the profiles of PCBs and OCPs were similar among the individuals, with predominance of penta, hexa and heptachlorobiphenyls and p'p-DDE, organochlorine concentrations exhibited a high degree of intra-species variability. The influence of body condition during the migration period in the distribution of organochlorine contaminants was also evaluated, showing that it is a significant factor in the variation and redistribution of these compounds in the tissues of these birds. The intense use of lipid reserves associated to the contamination from organochlorine compounds could be a troubling factor for seabirds with extended breeding periods and that spend most of their lives at sea migrating long distances, such as most of Procellariiformes. Studies on contamination are necessary to improve the knowledge of the threats to these birds and their populations as well as to contribute with information about persistent organic pollutants in the South Atlantic marine environment.
Resumo:
Background: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.
Resumo:
Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pretreatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.
Resumo:
Continuous enzymatic interesterification is an alternative to chemical interesterification for lipid modification technology which is economically viable for large scale use. A blend of 70% lard and 30% soybean oil was submitted to continuous enzymatic interesterification in a glass tubular bioreactor at flow rate ranging from 0.5 to 4.5 mL/min. The original mixture and the reaction products obtained were examined to determine melting and crystallization behavior by DSC, and analyzed for regiospecific fatty acid distribution. Continuous enzymatic interesterification changed the mixture, forming a new triacylglycerol composition, verified by DSC curves and variation in enthalpy of melting values. The regiospecific distribution of fatty acids was changed by flow variations in the reactor. In the continuous enzymatic interesterification reaction the flow rate of 4.5 mL/min, was more advantageous than slower flow rates, reducing acyl migration and increasing process productivity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Resumo:
Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day] pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs. (Hypertension. 2012; 59: 1263-1271.). Online Data Supplement
Resumo:
Strongyloidiasis is an intestinal parasitosis with an obligatory pulmonary cycle. A Th2-type immune response is induced and amplifies the cellular response through the secretion of inflammatory mediators. Although this response has been described as being similar to asthma, airway remodeling during pulmonary migration of larvae has not yet been established. The aim of this study was to identify the occurrence of airway remodeling during Strongyloides venezuelensis (S. v.) infection and to determine the ability of dexamethasone treatment to interfere with the mechanisms involved in this process. Rats were inoculated with 9,000 S. v. larvae, treated with dexamethasone (2 mg/kg) and killed at 1, 3, 5, 7, 14 and 21 days. Morphological and morphometric analyzes with routine stains and immunohistochemistry were conducted, and some inflammatory mediators were evaluated using ELISA. Goblet cell hyperplasia and increased bronchiolar thickness, characterized by edema, neovascularization, inflammatory infiltrate, collagen deposition and enlargement of the smooth muscle cell layer were observed. VEGF, IL1-beta and IL-4 levels were elevated throughout the course of the infection. The morphological findings and the immunomodulatory response to the infection were drastically reduced in dexamethasone-treated rats. The pulmonary migration of S. venezuelensis larvae produced a transitory, but significant amount of airway remodeling with a slight residual bronchiolar fibrosis. The exact mechanisms involved in this process require further study. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Using numerical models that couple surface processes, flexural isostasy, faulting and the thermal effects of rifting, we show that fault-bounded escarpments created at rift flanks by mechanical unloading and flexural rebound have little potential to "survive" as retreating escarpments if the lower crust under the rift flank is substantially stretched. In this configuration, a drainage divide that persists through time appears landward of the initial escarpment in a position close to a secondary bulge that is created during the rifting event at a distance that depends on the flexural rigidity of the upper crust. Moreover, the migration of the escarpment to the secondary bulge occurs when the pre-rift topography dips landward, otherwise the evolution of the escarpment is guided by the pre-existing inland drainage divide. To illustrate this new mechanism for the evolution of passive margins, we study the examples of Southeastern Australia and Southeastern Brazil. We propose that a pre-existing inland drainage divide with rift related flank uplift can produce the double drainage divide observed in Southeastern Australia. On the other hand, we conclude that it is possible that the Serra do Mar escarpments on the Southeastern Brazilian margin originated as a secondary flexural bulge during rifting that persisted through time. In both cases, the retreating escarpment scenario is unlikely and the present-day margin morphology can be explained as resulting from rift-related vertical motions alone, without requiring significant post-rift "rejuvenation".