17 resultados para HERBICIDE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thiadiazolylurea derivative tebuthiuron (TBH) is commonly used as an herbicide even though it is highly toxic to humans. While various processes have been proposed for the removal of organic contaminants of this type from wastewater, electrochemical degradation has shown particular promise. The aim of the present study was to investigate the electrochemical degradation of TBH using anodes comprising boron-doped (5000 and 30000 ppm) diamond (BDD) films deposited onto Ti substrates operated at current densities in the range 10-200 mA cm(-2). Both anodes removed TBH following a similar pseudo first-order reaction kinetics with k(ap)p close to 3.2 x 10(-2) min(-1). The maximum mineralization efficiency obtained was 80%. High-pressure liquid chromatography with UV-VIS detection established that both anodes degraded TBH via similar intermediates. Ion chromatography revealed that increasing concentrations of nitrate ions (up to 0.9 ppm) were formed with increasing current density, while the formation of nitrite ions was observed with both anodes at current densities >= 150 mA cm(-2). The BDD film prepared at the lower doping level (5000 ppm) was more efficient in degrading TBH than its more highly doped counterpart. This unexpected finding may be explained in terms of the quantity of impurities incorporated into the diamond lattice during chemical vapor deposition. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (gamma-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+) -limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ELECTROCHEMICAL OXIDATION OF THE HERBICIDE TEBUTHIURON USING DSA (R)-TYPE ELECTRODE. Tebuthiuron (TBH) is a herbicide widely used in different cultures and known for its toxic effects. Electrochemical methods are promising for removing pollutants such as pesticides. This study showed the degradation of TBH using a DSA (R) anode operated at current densities of 50 to 200 mA cm(-2). Removal presented pseudo-first order kinetics while high-pressure liquid chromatography (UV detection) showed two peaks, ascribed to degradation intermediates. The maximum percentage of total organic carbon removed was 12.9%. Ion chromatography revealed that higher concentrations of nitrate and nitrite ions formed with increasing current density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work assessed the bioremediation of herbicide Velpar K (R), in vitro in aqueous solution, used against weeds in sugar cane in Sao Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4), pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K (R) in the gel. The analysis of high performance liquid chromatography ( HPLC) showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K (R)/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K (R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20- tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (γ-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+)-limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work assessed the bioremediation of herbicide Velpar K®, in vitro in aqueous solution, used against weeds in sugar cane in São Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4), pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K®in the gel. The analysis of high performance liquid chromatography (HPLC) showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K®/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K®.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agriculture uses a huge variety and quantity of chemicals. If, on one hand, the goal is to increase productivity, on the other hand these products contaminate aquatic environments. Among these products, herbicides deserve greater attention in relation to contamination of aquatic environments due to their extensive use to weed control. This study was carried out because the effects of these molecules on aquatic microorganisms such as Escherichia coli, is still unclear. Using microdilution plate assays, Escherichia coli were exposed to various commercial formulations of herbicides widely used in Brazil. The herbicide paraquat was the only one able to prevent the growth of Escherichia coli and is characterized as bacteriostatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crop residues returned to the soil are important to preserve fertility and sustainability. This research addressed the long-term decomposition of sugarcane post-harvest residues (trash) under reduced tillage, therefore field renewal was performed with herbicide followed by subsoiling and ratoons were deprived of interrow scarification. The trial was conducted in the northern Sao Paulo State, Brazil during four consecutive crops (2005-2008) where litter bags containing N-15-labeled trash were disposed in the field attempting to simulate two distinct situations: the previous crop trash (PCT) or residues incorporated in the field after tillage, and post-harvest trash (PHT) or the remains of plant-cane harvest. Decomposition rates regarding dry matter (DM), carbon (C), root growth, plant nutrients (N, P, K, Ca, Mg and S), lignin (LIG) cellulose (CEL) and hemicellulose (HCEL) contents were assessed for PCT (2005 ndash;2008) and for PHT (2006-2008). There were significant reductions on DM and C:N ratio due to C losses and root growth within the litter bags over time. The DM from PCT and PHT decreased 96% and 73% after four and three crops, respectively, and the higher nutrients release were found for K, Ca and N. The LIG, CEL and HCEL concentrations in PCT decreased 60%, 29%, 70% after four crops and 47%, 35%, 70% from PHT after three crops, respectively. Trash decomposition was driven mainly by residues biochemical composition, root growth within the trash blanket and the climatic conditions during the crop cycles. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravena, R., Filho, R. V., Alves, P. L. C. A., Mazzafera, P. and Gravena, A. R. 2012. Glyphosate has low toxicity to citrus plants growing in the field. Can. J. Plant Sci. 92: 119-127. There has been controversy over whether glyphosate used for weed management in citrus fields causes significant toxicity to citrus plants. Glyphosate may be toxic to non-target plants exposed to accidental application or drift. This work evaluated glyphosate toxicity in plants of Valencia citrus (Citrus sinensis. L. Osbeck) grafted onto 'Rangpur lime' (Citrus limonia L. Osbeck) and citrumelo 'Swingle' (Poncirus trifoliata (L.) Raf x Citrus paradisi Mad) by trunk- or foliar-directed herbicide applications under field conditions. In the first experiment, glyphosate was sprayed at rates of 0, 90, 180, 260, 540, 1080 and 2160 g a.e. ha(-1) directly on the trunk to a height of 5 cm above the grafting region. In the second experiment, glyphosate was sprayed on the plant canopies at rates of 0, 0.036, 0.36, 3.6, 36, 360 and 720 g a.e. ha(-1). There was no visual damage caused by glyphosate applied directly to the trunk, but the plants were affected by glyphosate sprayed directly on the canopies at rates over 360 g a.e. ha(-1). The main symptom was observed in the new shoots formed after the application, indicating an effect on meristems. Little or no effect was observed in mature leaves. Eight days after application the levels of shikimate, total free amino acids and total phenolic compounds were unaffected. All plants affected by glyphosate recovered between 6 and 12 mo after the treatments. Therefore, despite some transient symptoms Valencia citrus grafted onto 'Rangpur lime' and citrumelo 'Swingle' were tolerant to glyphosate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased agricultural activity in watershed areas has been causing concern over contamination by herbicides in agricultural areas. The problem becomes more important when contamination can affect water for human consumption, as happens with water from the Poxim river, which supplies the city of Aracaju, capital of the State of Sergipe. The aim of this study was to evaluate the risk of contamination by herbicides to both surface and groundwater in the upper sub-basin of the Poxim River, and to detect the presence of the active ingredients Diuron and Ametrine up-river from the sugar-cane plantations. Risk analysis was carried out using criteria from the Environmental Protection Agency (EPA), the GUS index, and the GOSS method. It was observed that several active ingredients are at risk of leaching, demonstrating the importance of monitoring the river to control both the quality of water and the frequency and volume of herbicides used in the region. Based on the results, monitoring was carried out bi-monthly from July 2009 to July 2010 at two sampling points. Water samples were analyzed in the laboratory, where the presence of Diuron and Ametrine was noted. Water quality in the Sub-basin of the Rio Poxim is being influenced by the use of herbicides in the region. There was an increase in herbicide concentration in the surface water during the rainy season, possibly caused by soil runoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the reduction reaction of paraquat herbicide was used to obtain analytical signals using electrochemical techniques of differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry. Analytes were prepared with laboratory purified water and natural water samples (from Mogi-Guacu River, SP). The electrochemical techniques were applied to 1.0 mol L-1 Na2SO4 solutions, at pH 5.5, and containing different concentrations of paraquat, in the range of 1 to 10 mu mol L-1, using a gold ultramicroelectrode. 5 replicate experiments were conducted and in each the mean value for peak currents obtained -0.70 V vs. Ag/AgCl yielded excellent linear relationships with pesticide concentrations. The slope values for the calibration plots (method sensitivity) were 4.06 x 10(-3), 1.07 x 10(-2) and 2.95 x 10(-2) A mol(-1) L for purified water by differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry, respectively. For river water samples, the slope values were 2.60 x 10(-3), 1.06 x 10(-2) and 3.35 x 10(-2) A mol(-1) L, respectively, showing a small interference from the natural matrix components in paraquat determinations. The detection limits for paraquat determinations were calculated by two distinct methodologies, i.e., as proposed by IUPAC and a statistical method. The values obtained with multiple square waves voltammetry were 0.002 and 0.12 mu mol L-1, respectively, for pure water electrolytes. The detection limit from IUPAC recommendations, when inserted in the calibration curve equation, an analytical signal (oxidation current) is smaller than the one experimentally observed for the blank solution under the same experimental conditions. This is inconsistent with the definition of detection limit, thus the IUPAC methodology requires further discussion. The same conclusion can be drawn by the analyses of detection limits obtained with the other techniques studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as potential delivery vehicle for the controlled-extended release of ammonium sulfate (NH(4))(2)SO(4) and potassium phosphate (KH(2)PO(4)) fertilizers. PAAm-MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free radical polymerization method. The adsorption and desorption kinetics of fertilizers were determined using conductivity measurements based on previously built analytical curve. The addition of MC in the PAAm chains increased the quantities of (NH(4))(2)SO(4) and KH(2)PO(4) loaded and extended the time and quantities of fertilizers released. Coherently, both loading and releasing processes were strongly influenced by hydrophilic properties of hydrogels (AAm/MC mass proportion). The best sorption (124.0 mg KH(2)PO(4)/g hydrogel and 58.0 mg (NH(4))(2)SO(4)/g hydrogel) and desorption (54.9 mg KH(2)PO(4)/g hydrogel and 49.5 mg (NH(4))(2)SO(4)/g hydrogel) properties were observed for 6.0% AAm-1.0% MC hydrogels (AAm/MC mass proportion equal 6), indicating that these hydrogels are potentially viable to be used in controlled-extended release of fertilizers systems. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 2291-2298, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivou-se com este estudo avaliar diferentes métodos para a superação da dormência das sementes e a eficiência de herbicidas no controle químico de plantas de Momordicacharantia L. no estádio reprodutivo. O primeiro experimento constituiu-seem esquema fatorial 2 x 8 (duas épocas de coleta das sementes (2006 e 2007) e oito métodos de quebra de dormência: escarificação mecânica; imersão em ácido sulfúrico concentrado e a 50%; imersão em nitrato de potássio a 2%por três e seis horas; calor seco a 60°C; água quente a 60°C e uma testemunha sem tratamento). No segundo ensaio avaliou-se o controle da Momordicacharantia L. por meio de seis herbicidas distintos: Imazapic, Metsulfuron-methyl, Metribuzin, 2,4-D, Amicarbazone, Paraquat e uma testemunha sem aplicação de herbicidas. Em ambos os ensaios, o delineamento experimental utilizado foi o inteiramente casualizados, com quatro repetições. Após a aplicação dos tratamentos,pode-se concluir que a imersão das sementes em ácido sulfúrico concentrado por 3 minutos proporcionou uma maior porcentagem e velocidade de germinação e que o herbicida Metribuzin alcançou, embora tardiamente, um controle total das plantas de melão de São-Caetano.