9 resultados para Hückel-Möbius transition states
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The interaction of formamide and the two transition states of its amide group rotation with one, two, or three water molecules was studied in vacuum. Great differences between the electronic structure of formamide in its most stable form and the electronic structure of the transition states were noticed. Intermolecular interactions were intense, especially in the cases where the solvent interacted with the amide and the carbonyl groups simultaneously. In the transition states, the interaction between the lone pair of nitrogen and the water molecule becomes important. With the aid of the natural bond orbitals, natural resonance theory, and electron localization function (ELF) analyses an increase in the resonance of planar formamide with the addition of successive water molecules was observed. Such observation suggests that the hydrogen bonds in the formamidewater complexes may have some covalent character. These results are also supported by the quantitative ELF analyses. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
The Gedunin compound (C28H34O6) is a natural product extracted from Trichilia pallida that has shown a wide activity. The crystallographic structure shows two conformers in the asymmetric unit, which differ in a rotation of the furan group. To understand this molecular arrangement, the density functional calculations. Molecular Electrostatic Potential (MEP) and thermodynamic function calculation have been performed at the B3LYP/6-311++g(d,p) level. Both conformers were optimized and the agreement with the experimental structure was very good, making possible further theoretical analysis of the structure. The inter-conversion between two conformers depends on the energy barrier. This process is studied in the vacuum and shows two transition states with a low energetic barrier for a potential energy curve scanning rigid around furan group: 4.37 kcal/mol and 16.52 kcal/mol. As the first transition state has a notably lower energetic barrier, the preferred inter-conversion pathway between the conformers involves the first rather than the second transition state. Understanding this transition state in detail led us to perform its optimization, showing an energetic barrier around 3.66 kcal/mol. The negative free energy and low enthalpy confirm that the process is spontaneous and exothermic. The results show that this requirement makes the existence of the two conformers in the asymmetric unit possible. The structure of molecules in the asymmetric unit is better understood when the MEP is used on the interaction between molecules. For Gedunin, both molecules have shown MEP with well-defined regions, and this behavior contributes to the observed link between molecules and for the negative regions complementing positive regions of another molecule. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]
Resumo:
The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable than the oxy-form. Oxy- and cyanomet-HbGp show good fits on the basis of a two state model with critical urea concentrations at 220-222 nm of 5.1 +/- 0.2 and 6.1 +/- 0.1 mol/L, respectively. The three-state model was able to reveal a subtle second transition at lower urea concentration (1.0-2.0 mol/L) associated to partial oligomeric dissociation. The intermediate state for oxy- and cyanomet-HbGp is very similar to the native state. For met-HbGp, a different equilibrium, in the presence of urea, is observed. A sharp transition at 1.95 +/- 0.05 mol/L of denaturant is observed, associated to oligomeric dissociation and hemichrome formation. In this case, analysis by a three-state model reveals the great similarity between the intermediate and the unfolded states. Analysis of spectroscopic data, by two-state and three-state models, reveals consistency of obtained thermodynamic parameters for HbGp urea denaturation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The metallic carbides exhibit many novel prototypes of crystalline structure. Among these compounds Th2NiC2 was reported in 1991 as a new carbide which crystallizes in the U2IrC2 prototype structure. In this work we report a reinvestigation of the synthesis of this compound. We find that Th2NiC2 is a new superconductor. Our results suggest that this phase is stable only at high temperatures in the system Th-Ni-C. The substitution of Th by Sc stabilizes the phase and improves the superconducting properties. The highest superconducting critical temperature occurs at 11.2 K with nominal composition Th1.8Sc0.2NiC2. The electronic coefficient determined by specific heat measurements is close to zero. This unusual result can be explained by covalent bonding in the compound.
Resumo:
The competition between confinement potential fluctuations and band-gap renormalization (BGR) in GaAs/AlxGa1-xAs quantum wells grown on [1 0 0] and [3 1 1]A GaAs substrates is evaluated. The results clearly demonstrate the coexistence of the band-tail states filling related to potential fluctuations and the band-gap renormalization caused by an increase in the density of photogenerated carriers during the photoluminescence (PL) experiments. Both phenomena have strong influence on temperature dependence of the PL-peak energy (E-PL(T)). As the photon density increases, the E-PL can shift to either higher or lower energies, depending on the sample temperature. The temperature at which the displacement changes from a blueshift to a redshift is governed by the magnitude of the potential fluctuations and by the variation of BGR with excitation density. A simple band-tail model with a Gaussian-like distribution of the density of state was used to describe the competition between the band-tail filling and the BGR effects on E-PL(T). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
Resumo:
We have performed multicanonical simulations to study the critical behavior of the two-dimensional Ising model with dipole interactions. This study concerns the thermodynamic phase transitions in the range of the interaction delta where the phase characterized by striped configurations of width h = 1 is observed. Controversial results obtained from local update algorithms have been reported for this region, including the claimed existence of a second-order phase transition line that becomes first order above a tricritical point located somewhere between delta = 0.85 and 1. Our analysis relies on the complex partition function zeros obtained with high statistics from multicanonical simulations. Finite size scaling relations for the leading partition function zeros yield critical exponents. that are clearly consistent with a single second-order phase transition line, thus excluding such a tricritical point in that region of the phase diagram. This conclusion is further supported by analysis of the specific heat and susceptibility of the orientational order parameter.
Resumo:
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T-2 electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T-1 -> T-3 and T-1 -> T-5 transitions, supporting that the intermediate triplet state (T-2) decays by internal conversion to T-1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738757]