11 resultados para Glutamic acid decarboxylase antibodies
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The objective of this study was to determine the frequencies of autoantibodies to heterogeneous islet-cell cytoplasmic antigens (ICA), glutamic acid decarboxylase(65) (GAD(65)A), insulinoma-associated antigen-2 (IA-2A) and insulin (IAA)-and human leukocyte antigen (HLA) class II markers (HLA-DR and -DQ) in first degree relatives of heterogeneous Brazilian patients with type I diabetes(T1DM). A major focus of this study was to determine the influence of age, gender, proband characteristics and ancestry on the prevalence of autoantibodies and HLA-DR and -DQ alleles on disease progression and genetic predisposition to T1DM among the first-degree relatives. IAA, ICA, GAD(65)A, IA-2A and HLA- class II alleles were determined in 546 first-degree-relatives, 244 siblings, 55 offspring and 233 parents of 178 Brazilian patients with T1DM. Overall, 8.9% of the relatives were positive for one or more autoantibodies. IAA was the only antibody detected in parents. GAD(65) was the most prevalent antibody in offspring and siblings as compared to parents and it was the sole antibody detected in offspring. Five siblings were positive for the IA-2 antibody. A significant number (62.1%) of siblings had 1 or 2 high risk HLA haplotypes. During a 4-year follow-up study, 5 siblings (expressing HLA-DR3 or -DR4 alleles) and 1 offspring positive for GAD(65)A progressed to diabetes. The data indicated that the GAD(65) and IA-2 antibodies were the strongest predictors of T1DM in our study population. The high risk HLA haplotypes alone were not predictive of progression to overt diabetes.
Resumo:
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Ghrelin is a gastrointestinal peptide hormone (a 28-amino acid peptide) produced primarily by X/A cells in the oxyntic glands of the stomach fundus and cells lining the duodenum cavern. It suppresses insulin secretion and action and commands a significant role in regulating food intake. The aim of the present study was to show that modified laparoscopic sleeve gastrectomy (MLSG), in which a significant part of the gastric fundus and body of the stomach is removed up to 1 inch from the pylorus vein, may contribute to decreasing circulating ghrelin levels. METHODS: A study population consisting of 150 individuals was monitored after undergoing a MLSG, with individuals chosen based on a documented history of diabetes mellitus type 2 and metabolic syndrome, clinical results determining a body mass index (BMI) of 35 to 60 kg/m(2), peptide C level greater than 1, negative anti-glutamic acid decarboxylase, negative anti-insulin, and confirmed stability of drug/insulin treatment and glycosylated hemoglobin greater than 6.5% for at least 24 and 3 months, respectively, before enrollment. RESULTS: Twenty-four months after surgery, 150 patients (86.6%) presented with normal glycemic levels between 77 and 99 mg/dL. All patients improved average serum insulin levels by 9 mU/L and average glycosylated hemoglobin levels by 5.1% (normal range, 4%-6%). All patients tested negative for Helicobacter pylori and stopped using insulin, with 3 patients prescribed twice-daily use of an oral hypoglycemiant. In 14% of cases, patients experienced partial hair loss with low serum zinc levels and were prescribed oral zinc reposition and topical hair stimulants. The average weight loss recorded was 44.6% for patients with a BMI less than 45 kg/m(2) and 58% for patients with a BMI greater than 50 kg/m(2). CONCLUSIONS: The MLSG is a safe procedure with a low morbidity rate (2.7%) (4 cases of fistula and 2 of bleeding) and no surgical mortality in this study. This surgery can promote control of diabetes mellitus type 2 and aid the treatment of exogenous overweight and morbidly obese individuals. The results of this study show that only through resection of the ghrelin-producing gastric area can most obesity cases and diabetes type II conditions be reverted to nonobese and controlled diabetes. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson’s Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model
Resumo:
Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Neuromyelitis optica (NMO) is an inflammatory disease of the central nervous system characterized by severe optic neuritis and transverse myelitis, usually with a relapsing course. Aquaporin-4 antibody is positive in a high percentage of NMO patients and it is directed against this water channel richly expressed on foot processes of astrocytes. Due to the severity of NMO attacks and the high risk for disability, treatment should be instituted as soon as the diagnosis is confirmed. There is increasing evidence that NMO patients respond differently from patients with multiple sclerosis (MS), and, therefore, treatments for MS may not be suitable for NMO. Acute NMO attacks usually are treated with high dose intravenous corticosteroid pulse and plasmapheresis. Maintenance therapy is also required to avoid further attacks and it is based on low-dose oral corticosteroids and non-specific immunosuppressant drugs, like azathioprine and mycophenolate mofetil. New therapy strategies using monoclonal antibodies like rituximab have been tested in NMO, with positive results in open label studies. However, there is no controlled randomized trial to confirm the safety and efficacy for the drugs currently used in NMO.
Resumo:
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Resumo:
This paper compares the responses of conventional and transgenic soybean to glyphosate application in terms of the contents of 17 detectable soluble amino acids in leaves, analyzed by HPLC and fluorescence detection. Glutamate, histidine, asparagine, arginine + alanine, glycine + threonine and isoleucine increased in conventional soybean leaves when compared to transgenic soybean leaves, whereas for other amino acids, no significant differences were recorded. Univariate analysis allowed us to make an approximate differentiation between conventional and transgenic lines, observing the changes of some variables by glyphosate application. In addition, by means of the multivariate analysis, using principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA) it was possible to identify and discriminate different groups based on the soybean genetic origin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Sorption of aspartic and glutamic aminoacids by regeneration of calcined hydrotalcite is reported. Hydrotalcite was synthesized by coprecipitation and calcined at 773 K. Sorption experiments were performed at 298 K and 310 K, and the results reveal that at low aminoacids equilibrium concentrations, intercalation of hydroxyl anions takes place while at high equilibrium concentrations, the sorption process occur by means re-hydration and aminoacids intercalation of hydrotalcite. The results also suggested that Asp and Glu sorption is a temperature dependent process. The amount of sorbed amino acid decreases as the temperature increase. The effect is more pronounced for Glu sorption probably due to its higher hydrophobic character, which makes the sorption more difficult in comparison with sorption of Asp at higher temperature.
Resumo:
PURPOSE: To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS: Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS: Controls: Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION: The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.