24 resultados para Glutamate Assay
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Glutamate (L-Glu) is an abundant excitatory amino acid in the central nervous system (CNS) and is present in the rat PAG. Moreover, data in the literature indicate its involvement in central blood pressure control. Here we report on the cardiovascular effects caused by microinjection of L-Glu into the dorsomedial PAG (dmPAG) of rats and the glutamatergic receptors as well as the peripheral mechanism involved in their mediation. The microinjection of L-Glu into the dmPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. The cardiovascular response was significantly reduced by pretreatment of the dmPAG with a glutamatergic M-methyl-D-aspartate (NMDA) receptor antagonist (LY235959) and was not affected by pretreatment with a non-NMDA receptor antagonist (NBQX), suggesting a mediation of that response by the activation of NMDA receptors. Furthermore, the pressor response was blocked by pretreatment with the ganglion blocker pentolinium (5 mg/kg, intravenously), suggesting an involvement of the sympathetic nervous system in this response. Our results indicate that the microinjection of L-Glu into the dmPAG causes sympathetic-mediated pressor responses in unanesthetized rats, which are mediated by glutamatergic NMDA receptors in the dmPAG. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The 21 itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 mu g/0.25 mu l) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and a-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The objective of the present study was to compare the performance of three serological tests for diagnosis of Brucella abortus infections in buffaloes (Bubalus bubalis). Serum samples collected from 696 adult females were submitted to the competitive enzyme-linked immunosorbent assay (ELISAC), (I-ELISA), fluorescence polarization test (FPA), 2-mercaptoethanol test (2-ME) and complement fixation test (CFT). The gold standard was the combination of CFT and 2-ME, considering as positive the reactors in both CFT and 2-ME, and as negative those non-reactors. ROC analyses were done for C-ELISA, I-ELISA and FPA and the Kappa agreement index were also calculated. The best combinations of relative sensitivity (SEr) and relative specificity (SPr) and Kappa were given by C-ELISA (96.9%, 99.1%, and 0.932, respectively) and FPA (92.2%, 97.6 and 0.836, respectively). The C-ELISA and FPA were the most promising confirmatory tests for the serological diagnosis of brucellosis in buffaloes, and for these tests, cut-off values for buffaloes may be the same as those used for bovines.
Resumo:
We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)
Resumo:
Background: Given the established fact that obesity interferes with male reproductive functions, the present study aimed to evaluate sperm production in the testis and storage in the epididymis in a glutamate-induced model of obesity. Methods: Male rats were treated neonatally with monosodium glutamate (MSG) at doses of 4 mg/kg subcutaneously, or with saline solution (control group), on postnatal days 2, 4, 6, 8 and 10. On day 120, obesity was confirmed by the Lee index in all MSG-treated rats. After this, all animals from the two experimental groups were anesthetized and killed to evaluate body and reproductive organ weights, sperm parameters, plasma hormone levels (FSH, LH and testosterone), testicular and epididymal histo-morphometry and histopathology. Results: Significant reductions in absolute and relative weights of testis, epididymis, prostate and seminal vesicle were noted in MSG-treated animals. In these same animals plasma testosterone and follicle-stimulating hormone (FSH) concentrations were decreased, as well as sperm counts in the testis and epididymis and seminiferous epithelium height and tubular diameter. The sperm transit time was accelerated in obese rats. However, the number of Sertoli cells per seminiferous tubule and stereological findings on the epididymis were not markedly changed by obesity. Conclusions: Neonatal MSG-administered model of obesity lowers sperm production and leads to a reduction in sperm storage in the epididymis of adult male rats. The acceleration of sperm transit time can have implications for the sperm quality of these rats.
Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents
Resumo:
OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10) and monosodium glutamate (monosodium glutamate, n = 13) groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%), an increased area under the curve of total insulin secretion during glucose overload (39.3%), and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times), bradycardic responses (>4 times), and vagal (similar to 38%) and sympathetic effects (similar to 36%) were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.
Resumo:
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a rare autosomal dominant disease manifested by hypoglycemic symptoms triggered by fasting or high-protein meals, and by elevated serum ammonia. HI/HA is the second most common cause of hyperinsulinemic hypoglycemia of infancy, and it is caused by activating mutations in GLUD1, the gene that encodes mitochondrial enzyme glutamate dehydrogenase (GDH). Biochemical evaluation, as well as direct sequencing of exons and exon-intron boundary regions of the GLUD1 gene, were performed in a 6-year old female patient presenting fasting hypoglycemia and hyperammonemia. The patient was found to be heterozygous for one de novo missense mutation (c.1491A>G; p.Il497Met) previously reported in a Japanese patient. Treatment with diazoxide 100 mg/day promoted complete resolution of the hypoglycemic episodes. Arq Bras Endocrinol Metab. 2012;56(8):485-9
Resumo:
Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Cryptococcus neoformans causes meningitis and disseminated infection in healthy individuals, but more commonly in hosts with defective immune responses. Cell-mediated immunity is an important component of the immune response to a great variety of infections, including yeast infections. We aimed to evaluate a specific lymphocyte transformation assay to Cryptococcus neoformans in order to identify immunodeficiency associated to neurocryptococcosis (NCC) as primary cause of the mycosis. Methods: Healthy volunteers, poultry growers, and HIV-seronegative patients with neurocryptococcosis were tested for cellular immune response. Cryptococcal meningitis was diagnosed by India ink staining of cerebrospinal fluid and cryptococcal antigen test (Immunomycol-Inc, SP, Brazil). Isolated peripheral blood mononuclear cells were stimulated with C. neoformans antigen, C. albicans antigen, and pokeweed mitogen. The amount of H-3-thymidine incorporated was assessed, and the results were expressed as stimulation index (SI) and log SI, sensitivity, specificity, and cut-off value (receiver operating characteristics curve). We applied unpaired Student t tests to compare data and considered significant differences for p<0.05. Results: The lymphotoxin alpha showed a low capacity with all the stimuli for classifying patients as responders and non-responders. Lymphotoxin alpha stimulated by heated-killed antigen from patients with neurocryptococcosis was not affected by TCD4+ cell count, and the intensity of response did not correlate with the clinical evolution of neurocryptococcosis. Conclusion: Response to lymphocyte transformation assay should be analyzed based on a normal range and using more than one stimulator. The use of a cut-off value to classify patients with neurocryptococcosis is inadequate. Statistical analysis should be based on the log transformation of SI. A more purified antigen for evaluating specific response to C. neoformans is needed.
Resumo:
This work aims to evaluate the cytocompatibility of injectable and moldable restorative biomaterials based on granules of dense or porous biphasic calcium phosphates (BCPs) with human primary mesenchymal cells, in order to validate them as tools for stem cell-induced bone regeneration. Porous hydroxyapatite (HA) and HA/beta-tricalcium phosphate (beta-TCP) (60: 40) granules were obtained by the addition of wax spheres and pressing at 20 MPa, while dense materials were compacted by pressing at 100 MPa, followed by thermal treatment (1100 degrees C), grinding, and sieving. Extracts were prepared by 24-h incubation of granules on culture media, with subsequent exposition of human primary mesenchymal cells. Three different cell viability parameters were evaluated on the same samples. Scanning electron microscopy analysis of the granules revealed distinct dense and porous surfaces. After cell exposition to extracts, no significant differences on mitochondrial activity (2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) or cell density (Crystal Violet Dye Elution) were observed among groups. However, Neutral Red assay revealed that dense materials extracts induced lower levels of total viable cells to porous HA/beta-TCP (P < 0.01). Calcium ion content was also significantly lower on the extracts of dense samples. Porogenic treatments on BCP composites do not affect cytocompatibility, as measured by three different parameters, indicating that these ceramics are well suited for further studies on future bioengineering applications.
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
Phospholipases A(2) (PLA(2)) are key enzymes in membrane metabolism. The release of fatty acids and lysophospholipids by PLA(2) activates several intra-cellular second messenger cascades that regulate a wide variety of physiological responses. The aim of the present study is to describe a radioenzymatic assay to determine the activity of three main PLA(2) subtypes in platelets, namely extracellular calcium-dependent PLA(2) (sPLA(2)) and intracellular calcium-dependent (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)). The differentiation of these distinct PLA(2) subtypes was based on the enzyme substrate preference (arachdonic acid or palmitoyl acid) and calcium concentration. Our results indicate that this new assay is feasible, precise and specific to measure the activity of the aforementioned subtypes of PLA(2). Therefore, this protocol can be used to investigate modifications of PLA(2) homeostasis in distinct biological models addressing the pathophysiology of many medical and neuropsychiatric disorders such as schizophrenia and Alzheimer's disease. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Moraes DJ, Zoccal DB, Machado BH. Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Botzinger complex of rats. J Neurophysiol 108: 610-623, 2012. First published April 25, 2012; doi:10.1152/jn.00057.2012.-The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Botzinger/pre-Botzinger complexes (RVLM/BotC/pre-BotC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BotC/pre-BotC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BotC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 +/- 0.02 vs. 1 +/- 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 +/- 2 vs. 82 +/- 2%; P < 0.05; n = 8), but decreased postinspiratory (35 +/- 3 vs. 12 +/- 2%; P < 0.05) and late-expiratory (24 +/- 4 vs. 2 +/- 1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 +/- 6 vs. 40 +/- 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 +/- 8 vs. 26 +/- 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BotC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BotC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BotC and RVLM/pre-BtC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BotC is essential to the coupling of active expiration and sympathoexcitatory response.
Resumo:
Background: In Cambodia, malaria transmission is low and most cases occur in forested areas. Seroepidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season. Methods: In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to Plasmodium falciparum Glutamate Rich Protein (GLURP) and Plasmodium vivax Merozoite Surface Protein-119 (MSP-119) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method. Results: A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for P. falciparum and 7.9% and 6.0% for P. vivax in August and November respectively). P. falciparum force of infection was higher in the eastern region and increased between August and November, whilst P. vivax force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for P. falciparum in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to P. falciparum during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases. Discussion: In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.