14 resultados para Genetic Algorithm optimization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper aims to provide an improved NSGA-II (Non-Dominated Sorting Genetic Algorithm-version II) which incorporates a parameter-free self-tuning approach by reinforcement learning technique, called Non-Dominated Sorting Genetic Algorithm Based on Reinforcement Learning (NSGA-RL). The proposed method is particularly compared with the classical NSGA-II when applied to a satellite coverage problem. Furthermore, not only the optimization results are compared with results obtained by other multiobjective optimization methods, but also guarantee the advantage of no time-spending and complex parameter tuning.
Resumo:
This paper presents a structural damage detection methodology based on genetic algorithms and dynamic parameters. Three chromosomes are used to codify an individual in the population. The first and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective function. A numerical analysis was performed for several truss structures under different damage scenarios. The results have shown that the methodology can reliably identify damage scenarios using noisy measurements and that it results in only a few misidentified elements. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).
Resumo:
Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.
Resumo:
This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.
Resumo:
In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011
Resumo:
Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains.
Resumo:
The Bernoulli's model for vibration of beams is often used to make predictions of bending modulus of elasticity when using dynamic tests. However this model ignores the rotary inertia and shear. Such effects can be added to the solution of Bernoulli's equation by means of the correction proposed by Goens (1931) or by Timoshenko (1953). But to apply these corrections it is necessary to know the E/G ratio of the material. The objective of this paper is the determination of the E/G ratio of wood logs by adjusting the analytical solution of the Timoshenko beam model to the dynamic testing data of 20 Eucalyptus citriodora logs. The dynamic testing was performed with the logs in free-free suspension. To find the stiffness properties of the logs, the residue minimization was carried out using the Genetic Algorithm (GA). From the result analysis one can reasonably assume E/G = 20 for wood logs.
Resumo:
According to recent research carried out in the foundry sector, one of the most important concerns of the industries is to improve their production planning. A foundry production plan involves two dependent stages: (1) determining the alloys to be merged and (2) determining the lots that will be produced. The purpose of this study is to draw up plans of minimum production cost for the lot-sizing problem for small foundries. As suggested in the literature, the proposed heuristic addresses the problem stages in a hierarchical way. Firstly, the alloys are determined and, subsequently, the items that are produced from them. In this study, a knapsack problem as a tool to determine the items to be produced from furnace loading was proposed. Moreover, we proposed a genetic algorithm to explore some possible sets of alloys and to determine the production planning for a small foundry. Our method attempts to overcome the difficulties in finding good production planning presented by the method proposed in the literature. The computational experiments show that the proposed methods presented better results than the literature. Furthermore, the proposed methods do not need commercial software, which is favorable for small foundries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.
Resumo:
A series of 2,5-diaryl substituted furans functionalized with several amino acids were synthesized and evaluated as the cyclooxygenases COX-1 and COX-2 enzymes inhibitors. The proline-substituted compound inhibited PGE(2) secretion by LPS-stimulated neutrophils, suggesting selectivity for COX-2. Molecular docking studies in the binding site of COX-2 were performed. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.