7 resultados para Gaussian quadrature formulas.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H approximate to 1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H = 1/2 but with a non-Gaussian propagator.
Resumo:
Objectives: Cardiac surgery (CC) determines systemic and pulmonary changes that require special care. What motivated several studies conducted in healthy subjects to assess muscle strength were the awareness of the importance of respiratory muscle dysfunction in the development of respiratory failure. These studies used maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) values. This study examined the concordance between the values predicted by the equations proposed by Black & Hyatt and Neder, and the measured values in cardiac surgery (CS) patients. Methods: Data were collected from preoperative evaluation forms. The Lin coefficient and Bland-Altman plots were used for statistical concordance analysis. The multiple linear regression and analysis of variance (ANOVA) were used to produce new formulas. Results: There were weak correlations of 0.22 and 0.19 in the MIP analysis and of 0.10 and 0.32 in the MEP analysis, for the formulas of Black & Hyatt and Neder, respectively. The ANOVA for both MIP and MEP were significant (P <0.0001), and the following formulas were developed: MIP = 88.82 - (0.51 x age) + (19.86 x gender), and MEP = 91.36 -(030 x age) + (29.92 x gender). Conclusions: The Black and Hyatt and Neder formulas predict highly discrepant values of MIP and MEP and should not be used to identify muscle weakness in CS patients.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e. g., fractional Brownian motion, Levy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation sigma t which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Resumo:
A new method for analysis of scattering data from lamellar bilayer systems is presented. The method employs a form-free description of the cross-section structure of the bilayer and the fit is performed directly to the scattering data, introducing also a structure factor when required. The cross-section structure (electron density profile in the case of X-ray scattering) is described by a set of Gaussian functions and the technique is termed Gaussian deconvolution. The coefficients of the Gaussians are optimized using a constrained least-squares routine that induces smoothness of the electron density profile. The optimization is coupled with the point-of-inflection method for determining the optimal weight of the smoothness. With the new approach, it is possible to optimize simultaneously the form factor, structure factor and several other parameters in the model. The applicability of this method is demonstrated by using it in a study of a multilamellar system composed of lecithin bilayers, where the form factor and structure factor are obtained simultaneously, and the obtained results provided new insight into this very well known system.
Resumo:
Abstract Background Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype × age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. Results We found evidence for genotype × age interaction for fasting glucose and systolic blood pressure. Conclusions There is polygenic genotype × age interaction for fasting glucose and systolic blood pressure and quantitative trait locus × age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.
Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Resumo:
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.