3 resultados para Games of chance (Mathematics)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We show that for real quasi-homogeneous singularities f : (R-m, 0) -> (R-2, 0) with isolated singular point at the origin, the projection map of the Milnor fibration S-epsilon(m-1) \ K-epsilon -> S-1 is given by f/parallel to f parallel to. Moreover, for these singularities the two versions of the Milnor fibration, on the sphere and on a Milnor tube, are equivalent. In order to prove this, we show that the flow of the Euler vector field plays and important role. In addition, we present, in an easy way, a characterization of the critical points of the projection (f/parallel to f parallel to) : S-epsilon(m-1) \ K-epsilon -> S-1.
Resumo:
The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n(-1/2), n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.