7 resultados para Galactosidase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene a-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.
Resumo:
(Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae)). The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (alpha-xylosidase, beta-galactosidase, beta-glucosidase and xyloglucan endo-beta-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, alpha-xilosidase seems to be more important than beta-glucosidase and beta-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.
Resumo:
Papayas have a very short green life as a result of their rapid pulp softening as well as their susceptibility to physical injury and mold growth. The ripening-related changes take place very quickly, and there is a continued interest in the reduction of postharvest losses. Proteins have a central role in biological processes, and differential proteomics enables the discrimination of proteins affected during papaya ripening. A comparative analysis of the proteomes of climacteric and pre-climacteric papayas was performed using 2DE-DIGE. Third seven proteins corresponding to spots with significant differences in abundance during ripening were submitted to MS analysis, and 27 proteins were identified and classified into six main categories related to the metabolic changes occurring during ripening. Proteins from the cell wall (alpha-galactosidase and invertase), ethylene biosynthesis (methionine synthase), climacteric respiratory burst, stress response, synthesis of carotenoid precursors (hydroxymethylbutenyl 4-diphosphate synthase, GcpE), and chromoplast differentiation (fibrillin) were identified. There was some correspondence between the identified proteins and the data from previous transcript profiling of papaya fruit, but new, accumulated proteins were identified, which reinforces the importance of differential proteomics as a tool to investigate ripening and provides potentially useful information for maintaining fruit quality and minimizing postharvest losses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012
Resumo:
Abstract Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.
Resumo:
Abstract Background The p16INK4A gene product halts cell proliferation by preventing phosphorylation of the Rb protein. The p16INK4a gene is often deleted in human glioblastoma multiforme, contributing to unchecked Rb phosphorylation and rapid cell division. We show here that transduction of the human p16INK4a cDNA using the pCL retroviral system is an efficient means of stopping the proliferation of the rat-derrived glioma cell line, C6, both in tissue culture and in an animal model. C6 cells were transduced with pCL retrovirus encoding the p16INK4a, p53, or Rb genes. These cells were analyzed by a colony formation assay. Expression of p16INK4a was confirmed by immunohistochemistry and Western blot analysis. The altered morphology of the p16-expressing cells was further characterized by the senescence-associated β-galactosidase assay. C6 cells infected ex vivo were implanted by stereotaxic injection in order to assess tumor formation. Results The p16INK4a gene arrested C6 cells more efficiently than either p53 or Rb. Continued studies with the p16INK4a gene revealed that a large portion of infected cells expressed the p16INK4a protein and the morphology of these cells was altered. The enlarged, flat, and bi-polar shape indicated a senescence-like state, confirmed by the senescence-associated β-galactosidase assay. The animal model revealed that cells infected with the pCLp16 virus did not form tumors. Conclusion Our results show that retrovirus mediated transfer of p16INK4a halts glioma formation in a rat model. These results corroborate the idea that retrovirus-mediated transfer of the p16INK4a gene may be an effective means to arrest human glioma and glioblastoma.
Resumo:
BACKGROUND: In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. RESULTS: In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. CONCLUSIONS: Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms