28 resultados para GENOTOXICITY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized: however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered nanomaterials have been extensively applied as active materials for technological applications. Since the impact of these nanomaterials on health and environment remains undefined, research on their possible toxic effects has attracted considerable attention. It is known that in humans, for example, the primary site of gold nanoparticles (AuNps) accumulation is the liver. The latter has motivated research regarding the use of AuNps for cancer therapy, since specific organs can be target upon appropriate functionalization of specific nanoparticles. In this study, we investigate the geno and cytotoxicity of two types of AuNps against human hepatocellular carcinoma cells (HepG2) and peripheral blood mononuclear cells (PBMC) from healthy human volunteers. The cells were incubated in the presence of different concentrations of AuNps capped with either sodium citrate or polyamidoamine dendrimers (PAMAM). Our results suggest that both types of AuNps interact with HepG2 cells and PBMC and may exhibit in vitro geno and cytotoxicity even at very low concentrations. In addition, the PBMC were less sensitive to DNA damage toxicity effects than cancer HepG2 cells upon exposure to AuNps. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel production has received considerable attention in the recent past as a nonpolluting fuel. However, this assertion has been based on its biodegradability and reduction in exhaust emissions. Assessments of water and soil biodiesel pollution are still limited. Spill simulation with biodiesel and their diesel blends in soils were carried out, aiming at analyzing their cytotoxic and genotoxic potentials. While the cytotoxicity observed may be related to diesel contaminants, the genotoxic and mutagenic effects can be ascribed to biodiesel pollutants. Thus, taking into account that our data stressed harmful effects on organisms exposed to biodiesel-polluted soils, the designation of this biofuel as an environmental-friendly fuel should be carefully reviewed to assure environmental quality. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the effects of co-occurring aflatoxin B-1 (AFB(1)) and microcystin (MC) in aquaculture, using immunohistochemistry and genotoxicity methods. Tilapia (Oreochromis niloticus) were exposed to AFB(1) by intraperitoneal and MC (cell extract of Microcystis aeruginosa) by intraperitoneal and immersion routes. The interaction of MC-AFB(1) was evaluated co-exposing the intraperitoneal doses. Blood samples were collected after 8, 24, and 48h to analyze the micronucleus frequency and comet score. The interaction of MC-AFB(1) showed a synergic mutagenic response by higher micronucleus frequency of co-exposed group. A slight genotoxic synergism was also observed in the comet score. Immunohistochemistry detected MC in al lthe fish liver tissues exposed to MC by intraperitoneal route, and only the immersed group with the highest dose of MC showed a positive response. Although MC was non-detectable in the edible muscle, the combination of immunohistochemistry with genotoxicity assay was an attractive biomonitoring tool in aquaculture, where the animals were frequently exposed to co-occurring synergic hazards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the polycyclic aromatic hydrocarbon (PAH) genotoxicity was investigated in a one-step predator-prey relationship with the trophic-related marine species. Florida pompanos were fed for 5 and 10 days with pink shrimp post larvae previously exposed to benzo(a)pyrene (BaP) concentrations. Parent BaP body burden was measured in samples of Farfantepenaeus brasiliensis. BaP metabolites were determined in bile samples of Trachinotus carolinus and DNA damage was assessed through the comet and erythrocyte nuclear abnormalities (ENAs) assays in fish erythrocytes. BaP body burden increased significantly with the PAH concentration in pink shrimp PLs as well as the fish bile BaP metabolites. Both, comet and ENAs assays indicated significant increase on erythrocyte DNA damage of Florida pompanos fed with BaP-exposed pink shrimp on both feeding periods. The trophic route of BaP genotoxicity is discussed as well as the PAH biotransformation as the inducing mechanism for the DNA damages observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seabob shrimp Xiphopenaeus kroyeri is a marine species that lives in shallow waters of coastal environments, often impacted by polycyclic aromatic hydrocarbons (PAH) pollution. In the present study, seabob shrimp were exposed for 96 h to benzo[a]pyrene (BaP) at the nominal concentrations of 100, 200, 400 and 800 microg.L-1. Animals of the control groups were exposed either to clean water or to the BaP-carrier (DMSO). At the end of the exposures, muscle tissues were sampled for BaP uptake assessment and hepatopancreas and hemolymph for EROD enzyme activity and hemocytes DNA damage, respectively. EROD activity and DNA damage increased significantly as a function of BaP exposure concentrations. Significant correlations between BaP uptake and both EROD activity and DNA damage suggest that they can be used as suitable tools for integrated levels of study on the biomarkers of PAH exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bixin is the main carotenoid found in annatto seeds (Bixa orellana L.) and is responsible for their reddish-orange color. The antioxidant properties of this compound are associated with its ability to scavenge free radicals, which may reduce damage and protect tissues against toxicity caused by anticancer drugs such as cisplatin. In this study, the genotoxicity and antigenotoxicity of bixin on cisplatin-induced toxicity in PC12 cells was assessed. Cytotoxicity was evaluated using the mu assay, mutagenicity, genotoxicity, and protective effect of bixin were evaluated using the micronucleus test and comet assay. PC12 cells were treated with bixin (0.05, 0.08, and 0.10 mu g/mL), cisplatin (0.1 mu g/mL) or a combination of both bixin and cisplatin. Bixin was neither cytotoxic nor genotoxic compared to the controls. In the combined treatment bixin significantly reduced the percentage of DNA in tail and the frequency of micronuclei induced by cisplatin. This result suggests that bixin can function as a protective agent, reducing cisplatin-induced DNA damage in PC12 cells, and it is possible that this protection could also extend to neuronal cells. Further studies are being conducted to better understand the mechanisms involved in the activity of this protective agent prior to using it therapeutically. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins: the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the effects of co-occurring aflatoxin B1 (AFB1) and microcystin (MC) in aquaculture, using immunohistochemistry and genotoxicity methods. Tilapia (Oreochromis niloticus) were exposed to AFB1 by intraperitoneal and MC (cell extract of Microcystis aeruginosa) by intraperitoneal and immersion routes. The interaction of MC-AFB1 was evaluated co-exposing the intraperitoneal doses. Blood samples were collected after 8, 24, and 48h to analyze the micronucleus frequency and comet score. The interaction of MC-AFB1 showed a synergic mutagenic response by higher micronucleus frequency of co-exposed group. A slight genotoxic synergism was also observed in the comet score. Immunohistochemistry detected MC in al lthe fish liver tissues exposed to MC by intraperitoneal route, and only the immersed group with the highest dose of MC showed a positive response. Although MC was non-detectable in the edible muscle, the combination of immunohistochemistry with genotoxicity assay was an attractive biomonitoring tool in aquaculture, where the animals were frequently exposed to co-occurring synergic hazards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background To determine the possible genotoxic effect of exposure to the smoke generated by biomass burning on workers involved in manual sugar cane harvesting. Methods The frequency of micronuclei in exfoliated buccal cells and peripheral blood lymphocytes was determined in sugarcane workers in the Barretos region of Brazil, during the harvest season and compared to a control population, comprised of administrative employees of Barretos Cancer Hospital. Results The frequency of micronuclei was higher in the sugar cane workers. The mean frequency in blood lymphocytes (micronuclei/1000 cells) in the test group was 8.22 versus 1.27 in the control group. The same effect was observed when exfoliated buccal cells were considered (22.75 and 9.70 micronuclei/1000 cells for sugar cane workers and controls, respectively). Conclusion Exposure to emissions produced by the burning of sugar cane during harvesting induces genomic instability in workers, indicating the necessity of adopting more advanced techniques of harvesting sugar cane to preserve human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate micronucleus (MN) frequency in polychromatic erythrocytes (PCE) of female rats in persistent estrus (a model developed to mimic polycystic ovary syndrome) treated with selective estrogen receptor modulators (SERMs, tamoxifen, and raloxifene). Forty female Wistar-Hannover rats were divided into four groups of 10 animals each: Group I (normally cycling rats) and Group II (persistent estrus) both received only vehicle, while Group III (persistent estrus) was treated with tamoxifen (250 mu g/animal/day) and Group IV (persistent estrus) was treated with raloxifene (750 mu g/animal/day). Tamoxifen and raloxifene were given by oral gavage beginning on postnatal day 90 and continuing for 30 consecutive days. Peripheral blood samples were collected from tails 1 day following the last exposure. Blood smears were made on glass slides and stained with 10% Giemsa solution. ANOVA and a Tukey post-hoc test were used for data analysis. Mean percentages of MN were 1.82 +/- 0.13, 5.20 +/- 0.24, 3.32 +/- 0.13, and 3.04 +/- 0.12 in Groups I, II, III, and IV, respectively. The results indicate that tamoxifen and raloxifene similarly reduced the formation of MNPCE of female rats in persistent estrus (P < 0.0001 for Groups III and IV vs. Group II), using the dosages and time periods applied in the present study. The data suggest possibly antimutagenic effects of SERMs under high levels of estrogens. The findings also suggest that this is an interesting animal model for studying the genotoxicity of estrogens. Environ. Mol. Mutagen. 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear abnormalities in erythrocytes (NAE) were taken as biomarkers in the catfish Cathorops spixii (Ariidae) sampled in an estuary little affected by human activity (Cananeia) and in three regions (Santos Channel: SC, Santos Bay: SB and Sao Vicente Channel: SVC) of the Santos-Sao Vicente estuary impacted by various anthropogenic activities. Increases in NAE were observed in fish from SC and SVC sampled in the summer period as compared with specimens from the Cananeia estuary. These results suggest the presence of genotoxic compounds in these regions. However, the absence of significant differences in micronuclei frequency reflects slight mutagenic effects in these individuals. It is possible that the lower NAE frequency in specimens from SB might be associated with the greater remobilization and dilution of chemicals in this region. The low frequency of NAE in C. spixii from the Cananeia estuary is in accordance with the slight anthropogenic influence in this system, and may be suggestive of the absence of genotoxic and mutagenic effects in these organisms.