2 resultados para GABAa

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and affects 40% of the patients. Seizures arising from the mesial temporal lobe structures (i.e., amygdala and hippocampus) are common, whereas neocortical seizures are rare. In recent years, many studies aimed to identify the pattern of gene expression of neurotransmitters involved in molecular mechanisms of epilepsy. We used real-time PCR to quantify the expression of GABAA (subunits a1, beta 1, beta 2) and NMDA (subunits NR1, NR2A, and NR2B) receptor genes in amygdalae of 27 patients with TLE and 14 amygdalae from autopsy controls. The NR1 subunit was increased in patients with epilepsy when compared with controls. No differences were found in expression of NMDA subunits NR2A and NR2B or in a1, beta 1, and beta 2 subunits of GABAA receptors. Our results suggest that the NR1 subunit of NMDA receptors is involved in the amygdala hyperexcitability in some of the patients with TLE. (C) 2010 Wiley Periodicals, Inc., Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABAA receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions. Findings Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain. Conclusions Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.