5 resultados para Friction gripper

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation of a ring under axial compression is analyzed in order to estimate a favorable ring specimen geometry capable of limiting the influence of friction on the stress-strain curve obtained from SHPB tests. The analysis shows that the use of a ring specimen with a large inner diameter and a small radial thickness offers some advantages comparing with the traditional disk sample. In particular, it can improve the reliability of the test results for ductile materials in the presence of friction. Based on the deformation analysis of a ductile ring under compression, a correction coefficient is proposed to relate the actual material stress strain curve with the reading from the SHPB. It is shown using finite element simulation that the proposed correction can be used for a wide range of conventional ductile materials. Experimental results with steel alloys indicate that the correction procedure is an effective technique for an accurate measurement of the dynamic material strength response. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To describe and compare three alternative methods for controlling classical friction: Self-ligating brackets (SLB), special brackets (SB) and special elastomeric ligatures (SEB). METHODS: The study compared Damon MX, Smart Clip, In-Ovation and Easy Clip self-ligating bracket systems, the special Synergy brackets and Morelli's twin bracket with special 8-shaped elastomeric ligatures. New and used Morelli brackets with new and used elastomeric ligatures were used as control. All brackets had 0.022 x 0.028-in slots. 0.014-in nickel-titanium and stainless steel 0.019 x 0.025-in wires were tied to first premolar steel brackets using each archwire ligation method and pulled by an Instron machine at a speed of 0.5 mm/minute. Prior to the mechanical tests the absence of binding in the device was ruled out. Statistical analysis consisted of the Kruskal-Wallis test and multiple non-parametric analyses at a 1% significance level. RESULTS: When a 0.014-in archwire was employed, all ligation methods exhibited classical friction forces close to zero, except Morelli brackets with new and old elastomeric ligatures, which displayed 64 and 44 centiNewtons, respectively. When a 0.019 x 0.025-in archwire was employed, all ligation methods exhibited values close to zero, except the In-Ovation brackets, which yielded 45 cN, and the Morelli brackets with new and old elastomeric ligatures, which displayed 82 and 49 centiNewtons, respectively. CONCLUSIONS: Damon MX, Easy Clip, Smart Clip, Synergy bracket systems and 8-shaped ligatures proved to be equally effective alternatives for controlling classical friction using 0.014-in nickel-titanium archwires and 0.019 x 0.025-in steel archwires, while the In-Ovation was efficient with 0.014-in archwires but with 0.019 x 0.025-in archwires it exhibited friction that was similar to conventional brackets with used elastomeric ligatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research addresses the application of friction stir welding (FWS) of titanium alloy Ti–6Al–4V. Friction stir welding is a recent process, developed in the 1990s for aluminum joining; this joining process is being increasingly applied in many industries from basic materials, such as steel alloys, to high performance alloys, such as titanium. It is a process in great development and has its economic advantages when compared to conventional welding. For high performance alloys such as titanium, a major problem to overcome is the construction of tools that can withstand the extreme process environment. In the literature, the possibilities approached are only few tungsten alloys. Early experiments with tools made of cemented carbide (WC) showed optimistic results consistent with the literature. It was initially thought that WC tools may be an option to the FSW process since it is possible to improve the wear resistance of the tool. The metallographic analysis of the welds did not show primary defects of voids (tunneling) or similar internal defects due to processing, only defects related to tool wear which can cause loss of weld quality. The severe tool wear caused loss of surface quality and inclusions of fragments inside the joining, which should be corrected or mitigated by means of coating techniques on tool, or the replacement of cemented carbide with tungsten alloys, as found in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the earliest developments of human history, friction has been a major issue. From the invention of the wheel and the use of the first lubricants to the studiesof coated and microtexturized surfaces, significant effort has been put on improvements that couldovercome the resistance to motion. Areview by Holmberg, Andersson and Erdemir[1] shows that, in an average passenger car, about one third of the total energy consumptionis due to friction losses. Of these, another one third is consumed in the engine system. The optimization of the lubricating oil formulation used ininternal combustion enginesis an important way to reduce friction, therefore improving energeticefficiencyand controllingemissions.Lubrication is also a way to assure the required protection to the system by maintaining wear rates in an adequate level, which helps to minimize maintenance costs.