10 resultados para Fractional Calculus Operators
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
This study aimed to determine whether dental calculus formation is really higher among patients with chronic kidney disease undergoing hemodialysis than among controls. Furthermore, the study evaluated correlations between dental calculus formation and dental plaque, variables that are related to renal disease and/or saliva composition. The Renal Group was composed of 30 patients undergoing hemodialysis, whereas the Healthy Group had 30 clinically healthy patients. Stimulated whole saliva and parotid saliva were collected. Salivary flow rate and calcium and phosphate concentrations were determined. In the Renal Group the saliva collection was carried out before and after a hemodialysis session. Patients from both groups received intraoral exams, oral hygiene instructions, and dental scaling. Three months later, the dental calculus was measured by the Volpe-Manhold method to determine the rate of dental calculus formation. The Renal Group presented a higher rate of dental calculus formation (p < 0.01). Correlation was observed between rate of dental calculus formation and whole saliva flow rate in the Renal Group after a hemodialysis session (r = 0.44, p < 0.05). The presence of dental calculus was associated with phosphate concentration in whole saliva from the Renal Group (p < 0.05). In conclusion, patients undergoing hemodialysis presented accelerated dental calculus formation, probably due to salivary variables.
Resumo:
In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
Resumo:
Shift workers from control centers of electrical systems are a group that has received little attention in Brazil. This study aimed to compare workers' job satisfaction at five control centers of a Brazilian company electrical system, and according to their job titles. Method: The Organization Satisfaction Index (OSI) questionnaire to assess job satisfaction was used. ANOVA was used to compare OSI means, according to job title and control center. The results showed that there is no difference in job satisfaction among job titles, but a significant difference was found according to the control center. A single organizational culture cannot be applied to several branches. It is required to implement actions that would result in job satisfaction improvements among workers of all studied control rooms centers. The high level of education of operators working in all centers might have contributed to the similar values of perceived satisfaction among distinct job titles.
Resumo:
We extend and provide a vector-valued version of some results of C. Samuel about the geometric relations between the spaces of nuclear operators N(E, F) and spaces of compact operators K(E, F), where E and F are Banach spaces C(K) of all continuous functions defined on the countable compact metric spaces K equipped with the supremum norm. First we continue Samuel's work by proving that N(C(K-1), C(K-2)) contains no subspace isomorphic to K(C(K-3), C(K-4)) whenever K-1, K-2, K-3 and K-4 are arbitrary infinite countable compact metric spaces. Then we show that it is relatively consistent with ZFC that the above result and the main results of Samuel can be extended to C(K-1, X), C(K-2,Y), C(K-3, X) and C(K-4, Y) spaces, where K-1, K-2, K-3 and K-4 are arbitrary infinite totally ordered compact spaces; X comprises certain Banach spaces such that X* are isomorphic to subspaces of l(1); and Y comprises arbitrary subspaces of l(p), with 1 < p < infinity. Our results cover the cases of some non-classical Banach spaces X constructed by Alspach, by Alspach and Benyamini, by Benyamini and Lindenstrauss, by Bourgain and Delbaen and also by Argyros and Haydon.
Resumo:
The aims of this study were to investigate work conditions, to estimate the prevalence and to describe risk factors associated with Computer Vision Syndrome among two call centers' operators in Sao Paulo (n = 476). The methods include a quantitative cross-sectional observational study and an ergonomic work analysis, using work observation, interviews and questionnaires. The case definition was the presence of one or more specific ocular symptoms answered as always, often or sometimes. The multiple logistic regression model, were created using the stepwise forward likelihood method and remained the variables with levels below 5% (p < 0.05). The operators were mainly female and young (from 15 to 24 years old). The call center was opened 24 hours and the operators weekly hours were 36 hours with break time from 21 to 35 minutes per day. The symptoms reported were eye fatigue (73.9%), "weight" in the eyes (68.2%), "burning" eyes (54.6%), tearing (43.9%) and weakening of vision (43.5%). The prevalence of Computer Vision Syndrome was 54.6%. Associations verified were: being female (OR 2.6, 95% CI 1.6 to 4.1), lack of recognition at work (OR 1.4, 95% CI 1.1 to 1.8), organization of work in call center (OR 1.4, 95% CI 1.1 to 1.7) and high demand at work (OR 1.1, 95% CI 1.0 to 1.3). The organization and psychosocial factors at work should be included in prevention programs of visual syndrome among call centers' operators.
Resumo:
Gelfand and Ponomarev [I.M. Gelfand, V.A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite dimensional vector space, Funct. Anal. Appl. 3 (1969) 325-326] proved that the problem of classifying pairs of commuting linear operators contains the problem of classifying k-tuples of linear operators for any k. We prove an analogous statement for semilinear operators. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We construct all self-adjoint Schrodinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals.
Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Resumo:
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.