5 resultados para Forage machinery
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Two experiments in vitro were conducted to evaluate four Egyptian forage legume browses, i.e., leaves of prosopis (Prosopis juliflora), acacia (Acacia saligna), atriplex (A triplex halimus), and leucaena (Leucaena leucocephala), in comparison with Tifton (Cynodon sp.) grass hay for their gas production, methanogenic potential, and ruminal fermentation using a semi-automatic system for gas production (first experiment) and for ruminal and post ruminal protein degradability (second experiment). Acacia and leucaena showed pronounced methane inhibition compared with Tifton, while prosopis and leucaena decreased the acetate:propionate ratio (P<0.01). Acacia and leucaena presented a lower (P<0.01) ruminal NH3-N concentration associated with the decreasing (P<0.01) ruminal protein degradability. Leucaena, however, showed higher (P<0.01) intestinal protein digestibility than acacia. This study suggests that the potential methanogenic properties of leguminous browses may be related not only to tannin content, but also to other factors.
Resumo:
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Resumo:
Warm-season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO-Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. 'Tanzania') and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17-mo experiment with Tanzania guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. 'Xaraes'], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha(-1), averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha(-1) (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.
Resumo:
We evaluated Arthrobacter atrocyaneus (R1AF57) as producer of oxidoreductases for oxidative kinetic resolution of racemic secondary alcohols via oxidation reaction. This bacterium was isolated from Amazon soil samples using medium enriched with (RS)-1-(4-methylphenyl)ethanol as a carbon source. The kinetic resolution of several secondary alcohols through enantioselective oxidation mediated by resting cells and growing cells of A. atrocyaneus was efficiently achieved for the most alcohols. In general, it was possible to obtain only the (S)-enantiomer from (RS)-1-arylethanols.
Resumo:
Dry matter yield and chemical composition of forage grasses harvested from an area degraded by urban solid waste deposits were evaluated. A split-plot scheme in a randomized block design with four replicates was used, with five grasses in the plots and three harvests in the subplots. The mineral content and extraction and heavy metal concentration were evaluated in the second cut, using a randomized block design with five grasses and four replicates. The grasses were Brachiaria decumbens cv. Basilisk, Brachiaria ruziziensis, Brachiaria brizantha cv. Marandu and cv. Xaraés, and Panicum maximum cv. Tanzânia, cut at 42 days of regrowth. The dry matter yield per cut reached 1,480 kg ha-1; the minimum crude protein content was 9.5% and the average neutral detergent fiber content was 62.3%. The dry matter yield of grasses was satisfactory, and may be an alternative for rehabilitating areas degraded by solid waste deposits. The concentration of heavy metals in the plants was below toxicity levels; the chemical composition was appropriate, except for phosphorus. The rehabilitated areas may therefore be used for grazing.