9 resultados para Fluid pressure
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings: The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3 >rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance: For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Resumo:
PURPOSE. To study changes in lamina cribrosa position and prelaminar tissue thickness (PTT) after surgical IOP reduction in glaucoma patients. METHODS. Twenty-two patients (mean age, 71.4 years) were imaged with spectral domain optical coherence tomography (SD-OCT; 24 radial B-scans centered on the optic nerve head [ONH]) before trabeculectomy or tube shunt implantation. Follow up images were acquired 1 week, 1 month, 3 months, and 6 months postsurgery. Bruch's membrane opening (BMO), the internal limiting membrane (ILM) and the anterior laminar surface (ALS) were segmented in each radial scan with custom software. Surfaces were fitted to the ILM and ALS with the extracted three-dimesional coordinates. PTT was the distance between the ILM and ALS, perpendicular to a BMO reference plane. Serial postsurgical laminar displacement (LD), relative to the BMO reference plane, and changes in PTT were measured. Positive values indicated anterior LD. RESULTS. Mean (SD) presurgery IOP was 18.1 (6.5) mm Hg, and reduced by 4.7 (5.5), 2.4 (7.7), 7.0 (6.2), and 6.8 (7.5) mm Hg at 1 week, 1 month, 3 months, and 6 months postsurgery, respectively. At the four postsurgery time points, there was significant anterior LD (1.8 [9.5], -1.1 [8.9], 8.8 [20.2], and 17.9 [25.8] mu m) and PTT increase (1.7 [13.3], 2.4 [11.9], 17.4 [13.7], and 13.9 [18.6] mu m). LD was greater in ONHs with larger BMO area (P = 0.01) and deeper ALS (P = 0.04); however, PTT was not associated with any of the tested independent variables. CONCLUSIONS. Both anterior LD and thickening of prelaminar tissue occur after surgical IOP reduction in patients with glaucoma. (Invest Ophthalmol Vis Sci. 2012;53:5819-5826) DOI:10.1167/iovs.12-9924
Resumo:
Abstract Introduction Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital. Methods Thirty-three patients undergoing high-risk surgery were randomized either to a control group (group C, n = 16) or to an intervention group (group I, n = 17). In group I, ΔPP was continuously monitored during surgery by a multiparameter bedside monitor and minimized to 10% or less by volume loading. Results Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery. During surgery, group I received more fluid than group C (4,618 ± 1,557 versus 1,694 ± 705 ml (mean ± SD), P < 0.0001), and ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in group I. The median duration of postoperative stay in hospital (7 versus 17 days, P < 0.01) was lower in group I than in group C. The number of postoperative complications per patient (1.4 ± 2.1 versus 3.9 ± 2.8, P < 0.05), as well as the median duration of mechanical ventilation (1 versus 5 days, P < 0.05) and stay in the intensive care unit (3 versus 9 days, P < 0.01) was also lower in group I. Conclusion Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital. Trial registration NCT00479011
Resumo:
Background. Acute normovolemic hemodilution (ANH) is an alternative to blood transfusion in surgeries involving blood loss. This experimental study was designed to evaluate whether pulse pressure variation (PPV) would be an adequate tool for monitoring changes in preload during ANH, as assessed by transesophageal echocardiography. Methods. Twenty-one anesthetized and mechanically ventilated pigs were randomized into three groups: CTL (control), HES (hemodilution with 6% hydroxyethyl starch at a 1:1 ratio) or NS (hemodilution with saline 0.9% at a 3:1 ratio). Hemodilution was performed in animals of groups NS and HES in two stages, with target hematocrits 22% and 15%, achieved at 30-minute intervals. After two hours, 50% of the blood volume withdrawn was transfused and animals were monitored for another hour. Statistical analysis was based on ANOVA for repeated measures followed by multiple comparison test (P<0.05). Pearson's correlations were performed between changes in left ventricular end-diastolic volume (LVEDV) and PPV, central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP). Results. Group NS received a significantly greater amount of fluids during ANH (NS, 900 +/- 168 mL vs. HES, 200 +/- 50 mL, P<0.05) and presented greater urine output (NS, 2643 +/- 1097mL vs. HES, 641 +/- 338mL, P<0.001). Significant decreases in LVEDV were observed in group NS from completion of ANH until transfusion. In group HES, only increases in LVEDV were observed, at the end of ANH and at transfusion. Such changes in LVEDV (Delta LVEDV) were better reflected by changes in PPV (Delta PPV, R=-0.62) than changes in CVP (Delta CVP R=0.32) or in PAOP (Delta PAOP, R=0.42, respectively). Conclusion. Changes in preload during ANH were detected by changes in PPV. Delta PPV was superior to Delta PAOP and Delta CVP to this end. (Minerva Anestesiol 2012;78:426-33)
Resumo:
In this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical P1 space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 10191031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Patients with hydrocephalus and risk factors for overdrainage may be submitted to ventricular shunt (VS) implant with antisiphon device. The objective of this study was to prospectively evaluate for two years the clinical and tomographic results of the implant of fixed-pressure valves with antisiphon device SPHERA (R) in 35 adult patients, with hydrocephalus and risk factors for overdrainage. Of these, 3 had congenital hydrocephalus in adult patients with very dilated ventricles (Evans index >50%), 3 had symptomatic overdrainage after previous VS implant (subdural hematoma, hygroma or slit ventricle syndrome), 1 had previous chronic subdural hematoma, 15 had normal pressure hydrocephalus with final lumbar pressure <5 cm H2O after tap test (40 mL), 6 had pseudotumor cerebri, and 7 had hydrocephalus due to other causes. Clinical improvement was observed and sustained in 94.3% of the patients during the two-year period with no computed tomography (CT) evidence of hypo or overdrainage, and no immediate early or late significant complications.
Resumo:
Abstract Introduction We conducted the present study to examine the effects of hypertonic saline solution (7.5%) on cardiovascular function and splanchnic perfusion in experimental sepsis. Methods Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over 30 minutes. After 30 minutes, they were randomized to receive lactated Ringer's solution 32 ml/kg (LR; n = 7) over 30 minutes or 7.5% hypertonic saline solution 4 ml/kg (HS; n = 8) over 5 minutes. They were observed without additional interventions for 120 minutes. Cardiac output (CO), mean arterial pressure (MAP), portal and renal blood flow (PBF and RBF, respectively), gastric partial pressure of CO2 (pCO2; gas tonometry), blood gases and lactate levels were assessed. Results E. coli infusion promoted significant reductions in CO, MAP, PBF and RBF (approximately 45%, 12%, 45% and 25%, respectively) accompanied by an increase in lactate levels and systemic and mesenteric oxygen extraction (sO2ER and mO2ER). Widening of venous-arterial (approximately 15 mmHg), portal-arterial (approximately 18 mmHg) and gastric mucosal-arterial (approximately 55 mmHg) pCO2 gradients were also observed. LR and HS infusion transiently improved systemic and regional blood flow. However, HS infusion was associated with a significant and sustained reduction of systemic (18 ± 2.6 versus 38 ± 5.9%) and mesenteric oxygen extraction (18.5 ± 1.9 versus 36.5 ± 5.4%), without worsening other perfusional markers. Conclusion A large volume of LR or a small volume of HS promoted similar transient hemodynamic benefits in this sepsis model. However, a single bolus of HS did promote sustained reduction of systemic and mesenteric oxygen extraction, suggesting that hypertonic saline solution could be used as a salutary intervention during fluid resuscitation in septic patients.
Resumo:
Patients with hydrocephalus and risk factors for overdrainage may be submitted to ventricular shunt (VS) implant with antisiphon device. The objective of this study was to prospectively evaluate for two years the clinical and tomographic results of the implant of fixed-pressure valves with antisiphon device SPHERA® in 35 adult patients, with hydrocephalus and risk factors for overdrainage. Of these, 3 had congenital hydrocephalus in adult patients with very dilated ventricles (Evans index >50%), 3 had symptomatic overdrainage after previous VS implant (subdural hematoma, hygroma or slit ventricle syndrome), 1 had previous chronic subdural hematoma, 15 had normal pressure hydrocephalus with final lumbar pressure <5 cm H2O after tap test (40 mL), 6 had pseudotumor cerebri, and 7 had hydrocephalus due to other causes. Clinical improvement was observed and sustained in 94.3% of the patients during the two-year period with no computed tomography (CT) evidence of hypo or overdrainage, and no immediate early or late significant complications.
Resumo:
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.