3 resultados para First-order logic

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional abduction imposes as a precondition the restriction that the background information may not derive the goal data. In first-order logic such precondition is, in general, undecidable. To avoid such problem, we present a first-order cut-based abduction method, which has KE-tableaux as its underlying inference system. This inference system allows for the automation of non-analytic proofs in a tableau setting, which permits a generalization of traditional abduction that avoids the undecidable precondition problem. After demonstrating the correctness of the method, we show how this method can be dynamically iterated in a process that leads to the construction of non-analytic first-order proofs and, in some terminating cases, to refutations as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also discuss the implications for higher spatial dimensions as well as unusual aspects of our renormalization-group scheme. DOI: 10.1103/PhysRevB.86.214204

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasoning and change over inconsistent knowledge bases (KBs) is of utmost relevance in areas like medicine and law. Argumentation may bring the possibility to cope with both problems. Firstly, by constructing an argumentation framework (AF) from the inconsistent KB, we can decide whether to accept or reject a certain claim through the interplay among arguments and counterarguments. Secondly, by handling dynamics of arguments of the AF, we might deal with the dynamics of knowledge of the underlying inconsistent KB. Dynamics of arguments has recently attracted attention and although some approaches have been proposed, a full axiomatization within the theory of belief revision was still missing. A revision arises when we want the argumentation semantics to accept an argument. Argument Theory Change (ATC) encloses the revision operators that modify the AF by analyzing dialectical trees-arguments as nodes and attacks as edges-as the adopted argumentation semantics. In this article, we present a simple approach to ATC based on propositional KBs. This allows to manage change of inconsistent KBs by relying upon classical belief revision, although contrary to it, consistency restoration of the KB is avoided. Subsequently, a set of rationality postulates adapted to argumentation is given, and finally, the proposed model of change is related to the postulates through the corresponding representation theorem. Though we focus on propositional logic, the results can be easily extended to more expressive formalisms such as first-order logic and description logics, to handle evolution of ontologies.