17 resultados para Fertilizers inject
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The objective of this work was to evaluate the utilization by corn plants of P from triple superphosphate fertilizer labeled with P-32 (P-32-TSP), and of P from soil as affected by N rates and by the green manures (GM) sunn hemp (Crotalaria juncea) and millet (Pennisetum glaucum). The experiment was carried out using pots filled with 5 kg Oxisol (Rhodic Hapludox). A completely randomized design was used, in a 4x4x2 factorial arrangement, with four replicates. The treatments were: four P rates as TSP (0, 0.175, 0.350, and 0.700 g P per pot); four N rates as urea (0, 0.75, 1.50, and 2.25 g N per pot); and sunn hemp or millet as green manure. The additions of N and P by the GM were taken into account. After grain physiologic maturation, corn dry matter, P contents, accumulated P, and P recovery in the different treatments were measured. P-32-TSP recovery by corn increased with N increasing rates, and decreased with increasing rates of P-32-TSP. The mineral fertilizer provides most of the accumulated P by corn plants. The recovery of P-32-TSP by corn was 13.12% in average. The green manure species influence the assimilation of P-32-TSP by the plants.
Resumo:
Centrifugal spreaders dominate the application of solid materials in agriculture offering expressive operational field capacity and extended range of applied rates. Field tests for characterization of theirperformance are conducted without any physical obstacles (such as the presence of plants) during the parabolic trajectory of the falling particles of fertilizer to the soil. The purpose of this study was to comparatively evaluate the transverse distribution of solid fertilizers applied on cropped corn, soybeans and cotton. Evaluations of the spreaders were designed according to ASAE S341.3/99 Standard. Tests consisted in aligning side by side collectors in-between the cropped rows and weighting the material deposited. The results showed that transverse distribution of solid fertilizers applied over the cotton and corn crops is affected by the crop height, interfering directly on the effective width of the spreader application, which was not observedin the soybean crop, once the fertilizer application is done when the crop was still below the collector's height. The results suggest that evaluation of effective width of the spreaders application need to be done under real crop environment.
Resumo:
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.
Resumo:
This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as potential delivery vehicle for the controlled-extended release of ammonium sulfate (NH(4))(2)SO(4) and potassium phosphate (KH(2)PO(4)) fertilizers. PAAm-MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free radical polymerization method. The adsorption and desorption kinetics of fertilizers were determined using conductivity measurements based on previously built analytical curve. The addition of MC in the PAAm chains increased the quantities of (NH(4))(2)SO(4) and KH(2)PO(4) loaded and extended the time and quantities of fertilizers released. Coherently, both loading and releasing processes were strongly influenced by hydrophilic properties of hydrogels (AAm/MC mass proportion). The best sorption (124.0 mg KH(2)PO(4)/g hydrogel and 58.0 mg (NH(4))(2)SO(4)/g hydrogel) and desorption (54.9 mg KH(2)PO(4)/g hydrogel and 49.5 mg (NH(4))(2)SO(4)/g hydrogel) properties were observed for 6.0% AAm-1.0% MC hydrogels (AAm/MC mass proportion equal 6), indicating that these hydrogels are potentially viable to be used in controlled-extended release of fertilizers systems. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 2291-2298, 2012
Resumo:
Background: Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings: In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal beta-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal b-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions: Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities.
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, Sao Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with N-15 (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha(-1) N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha(-1) of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
Experimental results of flow around a circular cylinder with moving surface boundary-layer control (MSBC) are presented. Two small rotating cylinders strategically located inject momentum in the boundary layer of the cylinder, which delays the separation of the boundary layer. As a consequence, the wake becomes narrower and the fluctuating transverse velocity is reduced, resulting in a recirculation free region that prevents the vortex formation. The control parameter is the ratio between the tangential velocity of the moving surface and the flow velocity (U-c/U). The main advantage of the MSBC is the possibility of combining the suppression of vortex-induced vibration (VIV) and drag reduction. The experimental tests are preformed at a circulating water channel facility and the circular cylinders are mounted on a low-damping air bearing base with one degree-of-freedom in the transverse direction of the channel flow. The mass ratio is 1.8. The Reynolds number ranges from 1600 to 7500, the reduced velocity varies up to 17, and the control parameter interval is U-c/U = 5-10. A significant decreasing in the maximum amplitude of oscillation for the cylinder with MSBC is observed. Drag measurements are obtained for statically mounted cylinders with and without MSBC. The use of the flow control results in a mean drag reduction at U-c/U = 5 of almost 60% compared to the plain cylinder. PIV velocity fields of the wake of static cylinders are measured at Re = 3000. The results show that the wake is highly organized and narrower compared to the one observed in cylinders without control. The calculation of the total variance of the fluctuating transverse velocity in the wake region allows the introduction of an active closed-loop control. The experimental results are in good agreement with the numerical simulation studies conducted by other researchers for cylinders with MSBC. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Urease (Urs) was immobilized in electrochemically prepared polypyrrole (PPy) and the resulting films were characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet visible spectroscopy (UV-VIS). The enzymatic activity of Urs entrapped in the PPy matrix was confirmed by the catalytic conversion of urea into carbon dioxide and ammonia, when urea was detected amperometrically at different concentrations in standard samples and commercial fertilizers. The PPy/Urs biosensors exhibited selectivity, a relatively high efficiency at urea concentrations below 3.0 mmol L-1, and a sensitivity to urea of 2.41 mu A cm(-2) mmol(-1) L (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.
Resumo:
Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Removal of Mg from aluminum scraps, known as demagging, has been widely applied in the,aluminum industry. This work discusses bubble-formation theories and magnesium kinetic removal from aluminum scraps using chlorine and inert gas fluxing. The interfacial area of the bubbles and residence time were estimated using a mathematical model. To inject gaseous chlorine, three types of nozzles were used with varying internal diameter. In addition, a porous plug, as well as varying input chlorine flow and concentration were used. The use of lower chlorine concentration improves efficiency because the interfacial tension is reduced therefore, more and smaller bubbles are formed. The model proposed herein is consistent with the experimental data. [doi:10.2320/matertrans.M2011256]
Resumo:
The knowledge of the variations in the wood characteristics produced by eucalyptus trees according to age and sampling positions is essential for its proper use. This study had as objective to evaluate the influence of the age, longitudinal and radial positions on basic density and anatomical characteristics in Eucalyptus grandis wood. The trees were planted in 3x2 m spacing and fertilized with commercial fertilizers in planting, 6th and 12th months. According to basal area distribution, fifteen trees were selected (24, 36 and 72 months of age) - five trees per age. Disks at DBH position (1.3 m) were taken for fiber determination (length, wall thickness, lumen diameter and width) and vessels (tangential diameter, frequency and area occupied) and in other different sampling positions for basic density determination. Wood basic density increased from 0.43 to 0.46 g.cm(-3) as well as the trees age increases with a longitudinal variation model, characterized through a decrease in base-3m (0.42-0.49 -> 0.40-0.46 g.cm(-3)) and an increase to the top of the trunk (0.46 -> 0.54 g.cm(-3)) Fibers and vessels dimensions showed variations related to age and to pit-bark direction. Wood properties behavior and variations indicate that, until this period, the juvenile wood is being formed.
Resumo:
The main purpose of this study is to perform a nitrogen budget survey for the entire Brazilian Amazon region. The main inputs of nitrogen to the region are biological nitrogen fixation occurring in tropical forests (7.7 Tg. yr(-1)), and biological nitrogen fixation in agricultural lands mainly due to the cultivation of a large area with soybean, which is an important nitrogen-fixing crop (1.68 Tg. yr(-1)). The input due to the use of N fertilizers (0.48 Tg. yr(-1)) is still incipient compared to the other two inputs mentioned above. The major output flux is the riverine flux, equal to 2.80 Tg. yr(-1) and export related to foodstuff, mainly the transport of soybean and beef to other parts of the country. The continuous population growth and high rate of urbanization may pose new threats to the nitrogen cycle of the region through the burning of fossil fuel and dumping of raw domestic sewage in rivers and streams of the region.
Resumo:
The ventrolateral caudoputamen (VLCP) is well known to participate in the control of orofacial movements and forepaw usage accompanying feeding behavior. Previous studies from our laboratory have shown that insect hunting is associated with a distinct Fos up-regulation in the VLCP at intermediate rostro-caudal levels. Moreover, using the reversible blockade with lidocaine, we have previously suggested that the VLCP implements the stereotyped actions seen during prey capture and handling, and may influence the motivational drive to start attacking the roaches, as well. However, considering that (1) lidocaine suppresses action potentials not only in neurons, but also in fibers-of-passage, rendering the observed behavioral effect not specific to the ventrolateral caudoputamen; (2) the short lidocaine-induced inactivation period had left a relatively narrow window to observe the behavioral changes; and (3) that the restriction stress to inject the drug could have also disturbed hunting behavior, in the present study, we have examined the role of the VLCP in predatory hunting by placing bilateral NMDA lesions three weeks previous to the behavior testing. We were able to confirm that the VLCP serves to implement the stereotyped sequence of actions seen during prey capture and handling, but the study did not confirm its role in influencing the motivational drive to hunt. Together with other studies from our group, the present work serves as an important piece of information that helps to reveal the neural systems underlying predatory hunting. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.