8 resultados para FTSZ-INTERACTING PROTEIN
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: To investigate the relationship between TXNIP polymorphisms, diabetes and hypertension phenotypes in the Brazilian general population. Methods: Five hundred seventy-six individuals randomly selected from the general urban population according to the MONICA-WHO project guidelines were phenotyped for cardiovascular risk factors. A second, independent, sample composed of 487 family-trios from a different site was also selected. Nine TXNIP polymorphisms were studied. The potential association between TXNIP variability and glucose-phenotypes in children was also explored. TXNIP expression was quantified by real-time PCR in 53 samples from human smooth muscle cells primary culture. Results: TXNIP rs7211 and rs7212 polymorphisms were significantly associated with glucose and blood pressure related phenotypes. In multivariate logistic regression models the studied markers remained associated with diabetes even after adjustment for covariates. TXNIP rs7211 T/rs7212 G haplotype (present in approximately 17% of individuals) was significantly associated to diabetes in both samples. In children, the TXNIP rs7211 T/rs7212 G haplotype was associated with fasting insulin concentrations. Finally, cells harboring TXNIP rs7212 G allele presented higher TXNIP expression levels compared with carriers of TXNIP rs7212 CC genotype (p = 0.02). Conclusion: Carriers of TXNIP genetic variants presented higher TXNIP expression, early signs of glucose homeostasis derangement and increased susceptibility to chronic metabolic conditions such as diabetes and hypertension. Our data suggest that genetic variation in the TXNIP gene may act as a "common ground" modulator of both traits: diabetes and hypertension. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical beta-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 +/- 871.03 nM and 1,239.23 +/- 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 +/- 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
Resumo:
The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Thioredoxin interacting protein plays a pivotal role in several important processes of cardiovascular homeostasis by functioning as a biological sensor for biomechanical and oxidative stress. However, the effects of genetic variants in the modulation of arterial stiffness are unknown. In this scenario, the present study evaluated the relationship between the TXNIP rs7212 polymorphism and arterial stiffness. In the overall sample and in the diabetic group, individuals carrying CG + GG genotypes had higher PWV values compared with CC genotype group ( 10.0 vs 9.8 ms(-1), P = 0.03; 12.3 vs 11.2 ms(-1), P = 0.01; respectively). Our findings indicated that the G allele may contribute to increased arterial stiffness in the Brazilian general population and suggest a possible interaction with diabetes.
Resumo:
Arthrogryposisrenal dysfunctioncholestasis (ARC) syndrome is a rare autosomal recessive multisystem disorder caused by mutations in vacuolar protein sorting 33 homologue B (VPS33B) and VPS33B interacting protein, apicalbasolateral polarity regulator (VIPAR). Cardinal features of ARC include congenital joint contractures, renal tubular dysfunction, cholestasis, severe failure to thrive, ichthyosis, and a defect in platelet alpha-granule biogenesis. Most patients with ARC do not survive past the first year of life. We report two patients presenting with a mild ARC phenotype, now 5.5 and 3.5 years old. Both patients were compound heterozygotes with the novel VPS33B donor splice-site mutation c.1225+5G>C in common. Immunoblotting and complementary DNA analysis suggest expression of a shorter VPS33B transcript, and cell-based assays show that c.1225+5G>C VPS33B mutant retains some ability to interact with VIPAR (and thus partial wild-type function). This study provides the first evidence of genotypephenotype correlation in ARC and suggests that VPS33B c.1225+5G>C mutation predicts a mild ARC phenotype. We have established an interactive online database for ARC (https://grenada.lumc.nl/LOVD2/ARC) comprising all known variants in VPS33B and VIPAR. Also included in the database are 15 novel pathogenic variants in VPS33B and five in VIPAR. Hum Mutat 33:16561664, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
DEP domain-containing mTOR-interacting protein (DEPTOR) inhibits the mechanistic target of rapamycin (mTOR), but its in vivo functions are unknown. Previous work indicates that Deptor is part of the Fob3a quantitative trait locus (QTL) linked to obesity/leanness in mice, with Deptor expression being elevated in white adipose tissue (WAT) of obese animals. This relation is unexpected, considering the positive role of mTOR in adipogenesis. Here, we dissected the Fob3a QTL and show that Deptor is the highest-priority candidate promoting WAT expansion in this model. Consistently, transgenic mice overexpressing DEPTOR accumulate more WAT. Furthermore, in humans, DEPTOR expression in WAT correlates with the degree of obesity. We show that DEPTOR is induced by glucocorticoids during adipogenesis and that its overexpression promotes, while its suppression blocks, adipogenesis. DEPTOR activates the proadipogenic Akt/PKB-PPAR-gamma axis by dampening mTORC1-mediated feedback inhibition of insulin signaling. These results establish DEPTOR as a new regulator of adipogenesis.
Resumo:
We present here the clinical and molecular data of two patients with acromegaly treated with octreotide LAR after non-curative surgery, and who presented different responses to therapy. Somatostatin receptor type 2 and 5 (SSTR2 and SSTR5), and aryl hydrocarbon receptor-interacting protein (AIP) expression levels were analyzed by qPCR. In both cases, high SSTR2 and low SSTR5 expression levels were detected; however, only one of the patients achieved disease control after octreotide LAR therapy. When we analyzed AIP expression levels of both cases, the patient whose disease was controlled after therapy exhibited AIP expression levels that were two times higher than the patient whose disease was still active. These two cases illustrate that, although the currently available somatostatin analogs bind preferentially to SSTR2, some patients are not responsive to therapy despite high expression of this receptor. This difference could be explained by differences in post-receptor signaling pathways, including the recently described involvement of AIP. Arq Bras Endocrinol Metab. 2012;56(8):501-6
Resumo:
Selection of reference genes is an essential consideration to increase the precision and quality of relative expression analysis by the quantitative RT-PCR method. The stability of eight expressed sequence tags was evaluated to define potential reference genes to study the differential expression of common bean target genes under biotic (incompatible interaction between common bean and fungus Colletotrichum lindemuthianum) and abiotic (drought; salinity; cold temperature) stresses. The efficiency of amplification curves and quantification cycle (C (q)) were determined using LinRegPCR software. The stability of the candidate reference genes was obtained using geNorm and NormFinder software, whereas the normalization of differential expression of target genes [beta-1,3-glucanase 1 (BG1) gene for biotic stress and dehydration responsive element binding (DREB) gene for abiotic stress] was defined by REST software. High stability was obtained for insulin degrading enzyme (IDE), actin-11 (Act11), unknown 1 (Ukn1) and unknown 2 (Ukn2) genes during biotic stress, and for SKP1/ASK-interacting protein 16 (Skip16), Act11, Tubulin beta-8 (beta-Tub8) and Unk1 genes under abiotic stresses. However, IDE and Act11 were indicated as the best combination of reference genes for biotic stress analysis, whereas the Skip16 and Act11 genes were the best combination to study abiotic stress. These genes should be useful in the normalization of gene expression by RT-PCR analysis in common bean, the most important edible legume.