7 resultados para FREE POISSON ALGEBRAS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We prove that any two Poisson dependent elements in a free Poisson algebra and a free Poisson field of characteristic zero are algebraically dependent, thus answering positively a question from Makar-Limanov and Umirbaev (2007) [8]. We apply this result to give a new proof of the tameness of automorphisms for free Poisson algebras of rank two (see Makar-Limanov and Umirbaev (2011) [9], Makar-Limanov et al. (2009) [10]). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Let k be an algebraically closed field of characteristic zero and let L be an algebraic function field over k. Let sigma : L -> L be a k-automorphism of infinite order, and let D be the skew field of fractions of the skew polynomial ring L[t; sigma]. We show that D contains the group algebra kF of the free group F of rank 2.
Resumo:
Let D be a division ring with center k, and let D-dagger be its multiplicative group. We investigate the existence of free groups in D-dagger, and free algebras and free group algebras in D. We also go through the case when D has an involution * and consider the existence of free symmetric and unitary pairs in D-dagger.
Resumo:
We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.
Resumo:
We use computer algebra to study polynomial identities for the trilinear operation [a, b, c] = abc - acb - bac + bca + cab - cba in the free associative algebra. It is known that [a, b, c] satisfies the alternating property in degree 3, no new identities in degree 5, a multilinear identity in degree 7 which alternates in 6 arguments, and no new identities in degree 9. We use the representation theory of the symmetric group to demonstrate the existence of new identities in degree 11. The only irreducible representations of dimension <400 with new identities correspond to partitions 2(5), 1 and 2(4), 1(3) and have dimensions 132 and 165. We construct an explicit new multilinear identity for partition 2(5), 1 and we demonstrate the existence of a new non-multilinear identity in which the underlying variables are permutations of a(2)b(2)c(2)d(2)e(2) f.
Resumo:
The generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.
Resumo:
Bol algebras appear as the tangent algebra of Bol loops. A (left) Bol algebra is a vector space equipped with a binary operation [a, b] and a ternary operation {a, b, c} that satisfy five defining identities. If A is a left or right alternative algebra then A(b) is a Bol algebra, where [a, b] := ab - ba is the commutator and {a, b, c} := < b, c, a > is the Jordan associator. A special identity is an identity satisfied by Ab for all right alternative algebras A, but not satisfied by the free Bol algebra. We show that there are no special identities of degree <= 7, but there are special identities of degree 8. We obtain all the special identities of degree 8 in partition six-two. (C) 2011 Elsevier Inc. All rights reserved.