8 resultados para FIELD STRENGTH

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A metal-insulator transition in a two-dimensional semimetal based on HgTe quantum wells is discovered. The transition is induced by a magnetic field applied parallel to the plane of the quantum well. The threshold behavior of the activation energy as a function of the magnetic-field strength and an abrupt reduction of the Hall resistance at the onset of the transition suggest that the observed effect originates from the formation of an excitonic insulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present results of the first Townsend coefficient (alpha) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the alpha parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550-1300 Td was very good, as demonstrated by the use of the Korff parameterization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic behaviour of most commercial ferromagnetic steels is usually anisotropic presenting a magnetic easy axis. Changes in the direction of this axis can be related to mechanical changes and anomalies that occur in the fabrication process. The present work describes a method that uses a device with permanent magnets to create a precise rotational magnetic field. The device measures continuous Magnetic Barkhausen Noise signals related to the angle of magnetization, in order to determine the direction of the macroscopic magnetic easy axis. It also offers the possibility of obtaining real time parameters that quantify the magnetic anisotropy of the sample. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the current study was to monitor the migration of superparamagnetic iron oxide nanoparticle (SPION)-labeled C6 cells, which were used to induce glioblastoma tumor growth in an animal model, over time using magnetic resonance imaging (MRI), with the goal of aiding in tumor prognosis and therapy. METHODS: Two groups of male Wistar rats were used for the tumor induction model. In the first group (n=3), the tumors were induced via the injection of SPION-labeled C6 cells. In the second group (n=3), the tumors were induced via the injection of unlabeled C6 cells. Prussian Blue staining was performed to analyze the SPION distribution within the C6 cells in vitro. Tumor-inducing C6 cells were injected into the right frontal cortex, and subsequent tumor monitoring and SPION detection were performed using T2- and T2*-weighted MRI at a 2T field strength. In addition, cancerous tissue was histologically analyzed after performing the MRI studies. RESULTS: The in vitro qualitative evaluation demonstrated adequate distribution and satisfactory cell labeling of the SPIONs. At 14 or 21 days after C6 injection, a SPION-induced T2- and T2*-weighted MRI signal reduction was observed within the lesion located in the left frontal lobe on parasagittal topography. Moreover, histological staining of the tumor tissue with Prussian Blue revealed a broad distribution of SPIONs within the C6 cells. CONCLUSION: MRI analyses exhibit potential for monitoring the tumor growth of C6 cells efficiently labeled with SPIONs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bertuzzi, R, Franchini, E, Tricoli, V, Lima-Silva, AE, Pires, FDO, Okuno, NM, and Kiss, MAPDM. Fit-climbing test: A field test for indoor rock climbing. J Strength Cond Res 26(6): 1558-1563, 2012-The aim of this study was to develop an indoor rock-climbing test on an artificial wall (Fit-climbing test). Thirteen climbers (elite group [EG] = 6; recreational group [RG] = 7) performed the following tests: (a) familiarization in the Fitclimbing test, (b) the Fit-climbing test, and (c) a retest to evaluate the Fit-climbing test's reliability. Gas exchange, blood lactate concentration, handgrip strength, and heart rate were measured during the test. Oxygen uptake during the Fit-climbing test was not different between groups (EG = 8.4 +/- 1.1 L; RG = 7.9 +/- 1.5 L, p > 0.05). The EG performance (120 +/- 7 movements) was statistically higher than the RG climbers' performance (78 +/- 13 movements) during the Fit-climbing test. Consequently, the oxygen cost per movement during the Fit-climbing test of the EG was significantly lower than that of the RG (p < 0.05). Handgrip strength was higher in the EG when compared with that in the RG in both pre-Fit- and post-Fit-climbing test (p < 0.05). There were no significant differences in any other variables analyzed during the Fit-climbing test (p > 0.05). Furthermore, the performance in the Fit-climbing test presented high reliability (intraclass correlation coefficient = 0.97). Therefore, the performance during the Fit-climbing test may be an alternative to evaluate rock climbers because of its specificity and relation to oxygen cost per movement during climbing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central goal in unsaturated soil mechanics research is to create a smooth transition between traditional soil mechanics approaches and an approach that is applicable to unsaturated soils. Undrained shear strength and the liquidity index of reconstituted or remoulded saturated soils are consistently correlated, which has been demonstrated by many studies. In the liquidity index range from 1 (at w(l)) to 0 (at w(p)), the shear strength ranges from approximately 2 kPa to 200 kPa. Similarly, for compacted soil, the shear strength at the plastic limit ranges from 150 kPa to 250 kPa. When compacted at their optimum water content, most soils have a suction that ranges from 20 kPa to 500 kPa; however, in the field, compacted materials are subjected to drying and wetting, which affect their initial suction and as a consequence their shear strength. Unconfined shear tests were performed on five compacted tropical soils and kaolin. Specimens were tested in the as-compacted condition, and also after undergoing drying or wetting. The test results and data from prior literature were examined, taking into account the roles of void ratio, suction, and relative water content. An interpretation of the phenomena that are involved in the development of the undrained shear strength of unsaturated soils in the contexts of soil water retention and Atterberg limits is presented, providing a practical view of the behaviour of compacted soil based on the concept of unsaturated soil. Finally, an empirical correlation is presented that relates the unsaturated state of compacted soils to the unconfined shear strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 degrees of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b = 47 degrees +/- 20 degrees, 25 degrees +/- 20 degrees. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b = 33 degrees +/- 4 degrees, 55 degrees +/- 4 degrees, as traced by the center of the "Ribbon" of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l approximate to 0 degrees -> 80 degrees and b approximate to 0 degrees -> 30 degrees, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of +/- 0 degrees.25 pc(-1). This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of +/- 23 degrees. The ordered component and standard relations between polarization, color excess, and H-o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at +/- 975 angstrom does not appear to play a role in grain alignment for the low-density ISM studied here.