9 resultados para FEM

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. The C-Factor has been used widely to rationalize the changes in shrinkage stress occurring at the tooth/resin-composite interfaces. Experimentally, such stresses have been measured in a uniaxial direction between opposed parallel walls. The situation of adjoining cavity walls has been neglected. The aim was to investigate the hypothesis that: within stylized model rectangular cavities of constant volume and wall thickness, the interfacial shrinkage-stress at the adjoining cavity walls increases steadily as the C-Factor increases. Methods. Eight 3D-FEM restored Class I 'rectangular cavity' models were created by MSC.PATRAN/MSC.Marc, r2-2005 and subjected to 1% of shrinkage, while maintaining constant both the volume (20 mm(3)) and the wall thickness (2 mm), but varying the C-Factor (1.9-13.5). An adhesive contact between the composite and the teeth was incorporated. Polymerization shrinkage was simulated by analogy with thermal contraction. Principal stresses and strains were calculated. Peak values of maximum principal (MP) and maximum shear (MS) stresses from the different walls were displayed graphically as a function of C-Factor. The stress-peak association with C-Factor was evaluated by the Pearson correlation between the stress peak and the C-Factor. Results. The hypothesis was rejected: there was no clear increase of stress-peaks with C-Factor. The stress-peaks particularly expressed as MP and MS varied only slightly with increasing C-Factor. Lower stress-peaks were present at the pulpal floor in comparison to the stress at the axial walls. In general, MP and MS were similar when the axial wall dimensions were similar. The Pearson coefficient only expressed associations for the maximum principal stress at the ZX wall and the Z axis. Significance. Increase of the C-Factor did not lead to increase of the calculated stress-peaks in model rectangular Class I cavity walls. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to present a position based tetrahedral finite element method of any order to accurately predict the mechanical behavior of solids constituted by functionally graded elastic materials and subjected to large displacements. The application of high-order elements makes it possible to overcome the volumetric and shear locking that appears in usual homogeneous isotropic situations or even in non-homogeneous cases developing small or large displacements. The use of parallel processing to improve the computational efficiency, allows employing high-order elements instead of low-order ones with reduced integration techniques or strain enhancements. The Green-Lagrange strain is adopted and the constitutive relation is the functionally graded Saint Venant-Kirchhoff law. The equilibrium is achieved by the minimum total potential energy principle. Examples of large displacement problems are presented and results confirm the locking free behavior of high-order elements for non-homogeneous materials. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artigo foca no debate sobre representação política, representação especial de grupos e política de cotas com o objetivo de destacar os seus argumentos principais e mais controversos, explorando suas inconsistências, problematizando-os e estabelecendo um diálogo entre eles. Será considerado até que ponto o argumento por maior inclusão de membros de grupos sociais não hegemônicos em processos político-decisórios, através de mecanismos como as cotas, pode ser justificado desde uma perspectiva normativa. Dado o caráter polêmico do conceito de representação política e da noção de identidades e interesses de grupos, em que se justificaria essa demanda? Esta discussão será conduzida a partir de uma análise sobre o conceito de representação política, da noção de interesses, identidades e perspectivas de grupos, e de uma análise sobre os principais argumentos apresentados a favor das cotas e contra elas. O artigo foca na representação política das mulheres, estabelecendo assim um diálogo permanente com e entre perspectivas feministas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As luzes do Iluminismo francês consagradas por certa história da filosofia foram indubitavelmente as masculinas. As presenças de Voltaire, Rousseau e Diderot nas pesquisas e nas obras sobre o período são quase absolutas. A finalidade deste artigo é explorar as Luzes francesas, particularmente, a questão ética da felicidade, pelo olhar de uma razão tão ilustrada quanto a de Voltaire, Rousseau ou Diderot, porém de saiotes e espartilho: o pensamento de Émilie du Châtelet (1706-1749). Pouco conhecida pelo público brasileiro e menos estudada ainda pelos dix-huitièmistes locais, Madame du Châtelet, marquesa de berço, escreveu, por volta de 1746, um Discurso sobre a felicidade. O exame de algumas das teses e propostas éticas contidas nesse opúsculo é uma oportunidade instigante para se entenderem um pouco melhor não só as Luzes francesas, mas, sobretudo, a sensibilidade e as angústias das mulheres de vanguarda da França pré-revolucionária.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an alternative coupling strategy between the Boundary Element Method (BEM) and the Finite Element Method (FEM) in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.