13 resultados para Exit Ramps.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
On the basis of thin-section studies of cuttings and a core from two wells in the Amapa Formation of the Foz do Amazonas Basin, five main microfacies have been recognized within three stratigraphic sequences deposited during the Late Paleocene to Early Eocene. The facies are: 1) Ranikothalia grainstone to packstone facies; 2) ooidal grainstone to packstone facies; 3) larger foraminiferal and red algal grainstone to packstone facies; 4) Amphistegina and Helicostegina packstone facies; and 5) green algal and small benthic foraminiferal grainstone to packstone facies, divisible locally into a green algal and the miliolid foraminiferal subfacies and a green algal and small rotaliine foraminiferal subfacies. The lowermost sequence (Si) was deposited in the Late Paleocene-Early Eocene (biozone LF1, equivalent to P3-P6?) and includes rudaceous grainstones and packstones with large specimens of Ranikothalia bermudezi representative of the mid- and inner ramp. The intermediate and uppermost sequences (S2 and S3) display well-developed lowstand deposits formed at the end of the Late Paleocene (upper biozone LF1) and beginning of the Early Eocene (biozone LF2) on the inner ramp (larger foraminiferal and red algal grainstone to packstone facies), in lagoons (green algal and small benthic foraminiferal facies) and as shoals (ooidal facies) or banks (Amphistegina and Helicostegina facies). Depth and oceanic influence were the main controls on the distribution of these microfacies. Stratal stacking patterns evident within these sequences may well have been related to sea level changes postulated for the Late Paleocene and Early Eocene. During this time, the Amapa Formation was dominated by cyclic sedimentation on a gently sloping ramp. Environmental and ecological stress brought about by sea level change at the end of the biozone LF1 led to the extinction of the larger foraminifera (Ranikothalia bermudezi). (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]
Resumo:
Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The dorsolateral column of the periaqueductal gray (dlPAG) integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA) 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US) for the acquisition of olfactory fear conditioning (OFC) using amyl acetate odor as conditioned stimulus (CS). Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using beta-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.
Resumo:
Social networks are static illustrations of dynamic societies, within which social interactions are constantly changing. Fundamental sources of variation include ranging behaviour and temporal demographic changes. Spatiotemporal dynamics can favour or limit opportunities for individuals to interact, and then a network may not essentially represent social processes. We examined whether a social network can embed such nonsocial effects in its topology, whereby emerging modules depict spatially or temporally segregated individuals. To this end, we applied a combination of spatial, temporal and demographic analyses to a long-term study of the association patterns of Guiana dolphins, Sotalia guianensis. We found that association patterns are organized into a modular social network. Space use was unlikely to reflect these modules, since dolphins' ranging behaviour clearly overlapped. However, a temporal demographic turnover, caused by the exit/entrance of individuals (most likely emigration/immigration), defined three modules of associations occurring at different times. Although this factor could mask real social processes, we identified the temporal scale that allowed us to account for these demographic effects. By looking within this turnover period (32 months), we assessed fission-fusion dynamics of the poorly known social organization of Guiana dolphins. We highlight that spatiotemporal dynamics can strongly influence the structure of social networks. Our findings show that hypothetical social units can emerge due to the temporal opportunities for individuals to interact. Therefore, a thorough search for a satisfactory spatiotemporal scale that removes such nonsocial noise is critical when analysing a social system. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The Nuss procedure requires the creation of a substernal tunnel for bar positioning. This is a manoeuvre that can be dangerous, and cardiac perforation has occurred in a few cases. Our purpose was to describe two technical modifications that enable the prevention of these fatal complications. A series of 25 patients with pectus excavatum were treated with a modification of the Nuss procedure that included the entrance in the left haemithorax first, and the use of the retractor to lift the sternum, with the consequent lowering displacement of the heart. These modified techniques have certain advantages: (i) the narrow anterior mediastinum between the sternum and the pericardial sac is expanded by pulling up the sternum; (ii) the thoracoscopic visualization of the tip of the introducer during tunnel creation is improved; (iii) the rubbing of the introducer against the pericardium is minimized; (iv) the exit path of the introducer can be guided by the surgeon's finger and (v) haemostasis and integrity of the pericardial sac can be more easily confirmed. We observed that with these manoeuvres, the risk of pericardial sac and cardiac injury can be markedly reduced.
Resumo:
Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I. D. (internal diameter) stainless steel tubes for tests with R1234ze(E), a new refrigerant developed as a substitute for R134a with a much lower global warming potential (GWP). The experiments were performed for these two tube diameters in order to investigate a possible transition between macro and microscale flow boiling behavior. The experimental campaign includes mass velocities ranging from 50 to 1500 kg/m(2) s, heat fluxes from 10 to 300 kW/m(2), exit saturation temperatures of 25, 31 and 35 degrees C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high speed videos. Heat transfer coefficient, critical heat flux and flow pattern data were obtained. R1234ze(E) demonstrated similar thermal performance to R134a data when running at similar conditions. [DOI: 10.1115/1.4004933]
Resumo:
The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizae fungi (AMF) and rhizobium on rooting, growth and nutrition of seedlings of angico-red (Anadenanthera macrocarpa (Benth) Brenan) propagated by minicutting. Six progenies were used, of which were prepared cuttings with a pair of complete leaves. It was used a 55 cm(3)container filled with commercial substrate Bioplant (R). Four treatments were tested: 8 kg m-3 of superphosphate (SS) added to substrate; 4 kg m-3 SS added to substrate; 4 kg m-3 SS added to substrate and adition of a suspension solution containing rhizobium; 4 kg m-3 SS and suspension solution containing rhizobium plus 5 g of soil contaminated by AMF spores. There was no interaction among treatments for survival rate of cuttings and roots observed at bottom of the container, evaluated in the greenhouse exit (30 days) and the shade house exit (40 days), probably because the root system was still in formation. There were differences among the progeny for survival rate of the shoots, the percentage of cuttings with roots observed at bottom of the container, height, stem diameter and shoot dry weight. The evaluations of the growth characteristics of the cuttings in, particularly with respect to survival at full sun (140 days), demonstrate the efficiency of rhizobium and AMF on seedling production of this species. We conclude that the symbiotic association with rhizobium and / or FMA favors the production of seedlings of A. macrocarpa by minicutting.
Resumo:
Objective Severe pulmonary hypoplasia and pulmonary arterial hypertension are associated with reduced survival in congenital diaphragmatic hernia (CDH). We aimed to determine whether fetal endoscopic tracheal occlusion (FETO) improves survival in cases of severe isolated CDH. Methods Between May 2008 and July 2010, patients whose fetuses had severe isolated CDH (lung-to-head ratio < 1.0, liver herniation into the thoracic cavity and no other detectable anomalies) were assigned randomly to FETO or to no fetal intervention (controls). FETO was performed under maternal epidural anesthesia supplemented with fetal intramuscular anesthesia. Tracheal balloon placement was achieved with ultrasound guidance and fetoscopy between 26 and 30 weeks of gestation. All cases that underwent FETO were delivered by the EXIT procedure. Postnatal therapy was the same for both treated fetuses and controls. The primary outcome was survival to 6 months of age. Other maternal and neonatal outcomes were also evaluated. Results Twenty patients were enrolled randomly to FETO and 21 patients to standard postnatal management. The mean gestational age at randomization was similar in both groups (P = 0.83). Delivery occurred at 35.6 +/- 2.4 weeks in the FETO group and at 37.4 +/- 1.9 weeks in the controls (P < 0.01). In the intention-to-treat analysis, 10/20 (50.0%) infants in the FETO group survived, while 1/21 (4.8%) controls survived (relative risk (RR), 10.5 (95% CI, 1.5-74.7), P < 0.01). In the receivedtreatment analysis, 10/19 (52.6%) infants in the FETO group and 1/19 (5.3%) controls survived (RR, 10.0 (95% CI, 1.4-70.6) P < 0.01). Conclusion FETO improves neonatal survival in cases with isolated severe CDH. Copyright (C) 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Abstract Background Blood leukocytes constitute two interchangeable sub-populations, the marginated and circulating pools. These two sub-compartments are found in normal conditions and are potentially affected by non-normal situations, either pathological or physiological. The dynamics between the compartments is governed by rate constants of margination (M) and return to circulation (R). Therefore, estimates of M and R may prove of great importance to a deeper understanding of many conditions. However, there has been a lack of formalism in order to approach such estimates. The few attempts to furnish an estimation of M and R neither rely on clearly stated models that precisely say which rate constant is under estimation nor recognize which factors may influence the estimation. Results The returning of the blood pools to a steady-state value after a perturbation (e.g., epinephrine injection) was modeled by a second-order differential equation. This equation has two eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it possible to identify that these components are partitioned into three constants: R, M and SB; where SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked and a tentative estimation of R for mouse monocytes is presented. Conclusions This study establishes a firm theoretical basis for the estimation of the rate constants of the dynamics between the blood sub-compartments of white cells. It shows, for the first time, that the estimation must also take into account the exit to tissues rate constant, SB.
Resumo:
Abstract Background MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. Methods We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. Results MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. Conclusion In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer.
Resumo:
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.
Resumo:
BACKGROUND: MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. METHODS: We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. RESULTS: MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. CONCLUSION: In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer.