13 resultados para Exercise therapy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives To investigate the effect of Nintendo Wii (TM)-based motor cognitive training versus balance exercise therapy on activities of daily living in patients with Parkinson's disease. Design Parallel, prospective, single-blind, randomised clinical trial. Setting Brazilian Parkinson Association. Participants Thirty-two patients with Parkinson's disease (Hoehn and Yahr stages 1 and 2). Interventions Fourteen training sessions consisting of 30 minutes of stretching, strengthening and axial mobility exercises, plus 30 minutes of balance training. The control group performed balance exercises without feedback or cognitive stimulation, and the experimental group performed 10 Wii Fit (TM) games. Main outcome measure Section II of the Unified Parkinson's Disease Rating Scale (UPDRS-II). Randomisation Participants were randomised into a control group (n = 16) and an experimental group (n = 16) through blinded drawing of names. Statistical analysis Repeated-measures analysis of variance (RM-ANOVA). Results Both groups showed improvement in the UPDRS-II with assessment effect (RM-ANOVA P < 0.001, observed power = 0.999). There was no difference between the control group and the experimental group before training {8.9 [standard deviation (SD) 2.9] vs 10.1 (SD 3.8)}, after training [7.6 (SD 2.9) vs 8.1 (SD 3.5)] or 60 days after training [8.1 (SD 3.2) vs 8.3 (SD 3.6)]. The mean difference of the whole group between before training and after training was -0.9 (SD 2.3, 95% confidence interval -1.7 to -0.6). Conclusion Patients with Parkinson's disease showed improved performance in activities of daily living after 14 sessions of balance training, with no additional advantages associated with the Wii-based motor and cognitive training. Registered on http://www.clinicaltrials.gov (identifier: NCT01580787). (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. - The aim of this study was to identify the effects of strength training on plasma parameters, body composition and the liver of ovariectomized rats. Methods. - Wistar sedentary (SHAM), ovariectomized (OVX), and ovariectomized trained rats (strength training [OVX-EXE]) of 85% of one maximal repetition (1 RM), three times per week, for 10 weeks, were used on this study. We monitored the body weight and visceral (uterine, mesenteric and retroperitoneal) and subcutaneous adiposity, total cholesterol, triglycerides, HDL, blood glucose and liver morphology to identify the presence of macrovesicular steotosis (haematoxylin and eosin staining). Results. - We observed that strength training changed body weight (SHAM 293.0 +/- 14.5 g; OVX 342.6 +/- 10.8 g; OVX-EXE 317.7 +/- 11.9 g, P < 0.05), visceral and subcutaneous adiposity, glucose (SHAM 111.2 +/- 10.0 mg/dL; OVX 147.4 +/- 18.8 mg/dL; OVX-EXE 118.5 +/- 2.2 mg/dL, P < 0.05), increased HDL (SHAM 82.7 +/- 1.4 mg/dL; OVX 64.6 +/- 2.8 mg/dL; OVX-EXE 91.4 +/- 2.6 mg/dL, P < 0.05) and reduced macrovesicular steatosis in liver tissue. Conclusions. - Considering the data obtained in this research, we emphasise the use of strength exercise training as a therapeutic means to combat or control the metabolic disturbances associated with menopause, including adiposity, and adverse changes in blood glucose, blood HDL and macrovesicular steatosis. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Background: In this study we evaluated the rehabilitation profile of Brazilian soccer players which underwent lower limb muscle lesions. Methods: This is a descriptive investigation. We evaluated 139 professional soccer players (1724 years old). We evaluated the following variables: muscle lesion diagnosis, symptoms, non steroidal anti-inflammatory used, physiotherapy treatment, which physiotherapy recourses was used if treated and train adaptation. Results: In great part of the athletes muscle lesion remained between 2 weeks and 1 month. Around 54% were diagnosed by a physician; the other part was diagnosed by a physical therapist. Non steroidal anti-inflammatory were prescribed by physicians in 42% of the cases; in 7% the physical therapist prescribed the medication while in 49% of the cases the masseur prescribed the drug. More than 1/4 of the athletes received physiotherapy treatement between 48 hours and 5 days. Isometric exercise therapy was applied in 15% of the cases. 63% were not accompanied by the physiotherapist on their return to the field. 48% received massages immediately after injury. Conclusion: We presented discrepancy between the recommended theory described by several researches and the practice. We indicate the necessity of recycling in a general context the rehabilitation of muscle injuries.
Resumo:
INTRODUÇÃO: A síndrome da fragilidade, bastante comum em pessoas de idade avançada, consiste em um conjunto de sinais e sintomas no qual estão presentes critérios como perda de peso corporal não intencional em um ano (aproximadamente 5%), diminuição na velocidade da marcha, níveis baixos de atividade física, exaustão subjetiva e diminuição de força muscular. Os consequentes efeitos dessas mudanças relacionadas à idade, que incluem sarcopenia, disfunção imunológica e desregulação neuroendócrina, aumentam a vulnerabilidade do organismo ao estresse, reduzindo a habilidade de adaptar, compensar ou modular esses estímulos. Diferentes intervenções têm sido propostas para atenuar esse processo, sendo o exercício resistido (ER) uma das opções estudadas. OBJETIVO: Realizar uma revisão bibliográfica averiguando os efeitos dos ER na fisiopatologia da síndrome da fragilidade. MATERIAIS E MÉTODOS: Foi realizada uma revisão bibliográfica do período de 2004 a 2010, por meio das bases de dados LILACS, MEDLINE e PubMed. RESULTADOS: Por meio das análises dos estudos, foram observadas alterações nos sistemas hormonal e imune, atuando de forma sistêmica na reversão ou minimização dos efeitos da sarcopenia exercendo influência positiva na síndrome da fragilidade. CONCLUSÃO: O ER deve ser indicado como opção terapêutica para idosos frágeis ou pré-frágeis que não apresentem contraindicações para realização desta modalidade de exercício.
Resumo:
Os glicocorticoides (GC) são prescritos por praticamente todas as especialidades médicas, e cerca de 0,5% da população geral do Reino Unido utiliza esses medicamentos. Com o aumento da sobrevida dos pacientes com doenças reumatológicas, a morbidade secundária ao uso dessa medicação representa um aspecto importante que deve ser considerado no manejo de nossos pacientes. As incidências de fraturas vertebrais e não vertebrais são elevadas, variando de 30%-50% em pessoas que usam GC por mais de três meses. Assim, a osteoporose e as fraturas por fragilidade devem ser prevenidas e tratadas em todos os pacientes que iniciarão ou que já estejam em uso desses esteroides. Diversas recomendações elaboradas por várias sociedades internacionais têm sido descritas na literatura, porém não há consenso entre elas. Recentemente, o Americam College of Rheumatology publicou novas recomendações, porém elas são fundamentadas na FRAX (WHO Fracture Risk Assessment Tool) para analisar o risco de cada indivíduo e, dessa maneira, não podem ser completamente utilizadas pela população brasileira. Dessa forma, a Comissão de Osteoporose e Doenças Osteometabólicas da Sociedade Brasileira de Reumatologia, em conjunto com a Associação Médica Brasileira e a Associação Brasileira de Medicina Física e Reabilitação, implementou as diretrizes brasileiras de osteoporose induzida por glicocorticoide (OPIG), baseando-se na melhor evidência científica disponível e/ou experiência de experts. DESCRIÇÃO DO MÉTODO DE COLETA DE EVIDÊNCIA: A revisão bibliográfica de artigos científicos desta diretriz foi realizada na base de dados MEDLINE. A busca de evidência partiu de cenários clínicos reais, e utilizou as seguintes palavras-chave (MeSH terms): Osteoporosis, Osteoporosis/chemically induced*= (Glucocorticoids= Adrenal Cortex Hormones, Steroids), Glucocorticoids, Glucocorticoids/administration and dosage, Glucocorticoids/therapeutic use, Glucocorticoids/adverse effects, Prednisone/adverse effects, Dose-Response Relationship, Drug, Bone Density/drug effects, Bone Density Conservation Agents/pharmacological action, Osteoporosis/ prevention&control, Calcium, Vitamin D, Vitamin D deficiency, Calcitriol, Receptors, Calcitriol; 1-hydroxycholecalciferol, Hydroxycholecalciferols, 25-Hydroxyvitamin D3 1-alpha-hydroxylase OR Steroid Hydroxylases, Prevention and Control, Spinal fractures/prevention & control, Fractures, Spontaneous, Lumbar Vertebrae/injuries, Lifestyle, Alcohol Drinking, Smoking OR tobacco use disorder, Movement, Resistance Training, Exercise Therapy, Bone density OR Bone and Bones, Dual-Energy X-Ray Absorptiometry OR Absorptiometry Photon OR DXA, Densitometry, Radiography, (Diphosphonates Alendronate OR Risedronate Pamidronate OR propanolamines OR Ibandronate OR Zoledronic acid, Teriparatide OR PTH 1-34, Men AND premenopause, pregnancy, pregnancy outcome maternal, fetus, lactation, breast-feeding, teratogens, Children (6-12 anos), adolescence (13-18 anos). GRAU DE RECOMENDAÇÃO E FORÇA DE EVIDÊNCIA: A) Estudos experimentais e observacionais de melhor consistência; B) Estudos experimentais e observacionais de menor consistência; C) Relatos de casos (estudos não controlados); D) Opinião desprovida de avaliação crítica, com base em consensos, estudos fisiológicos ou modelos animais. OBJETIVO: Estabelecer as diretrizes para a prevenção e o tratamento da OPIG.
Resumo:
The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.
Resumo:
Bucioli, SA, de Abreu, LC, Valenti, VE, and Vannucchi, H. Carnitine supplementation effects on nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. J Strength Cond Res 26(6): 1695-1700, 2012-Previous studies have demonstrated that exercise stress increases oxidative stress in rats. However, antioxidant supplement therapy effects on reactive oxygen substances are conflicting. We evaluated the effects of carnitine on renal nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into 3 groups: (a) control group (not submitted to exercise stress), (b) exercise stress group, and (c) exercise stress and carnitine group. The rats from group 3 were treated with gavage administration of 1 ml of carnitine (5 mg.kg(-1)) for 7 consecutive days. The animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for reactive substances to thiobarbituric acid by malondialdehyde (MDA), reduced glutathione (GSH), and vitamin-E levels. Carnitine treatment attenuated MDA increase caused by exercise stress (1:0.16 +/- 0.02 vs. 2:0.34 +/- 0.07 vs. 3:0.1 +/- 0.01 mmmol per milligram of protein; p < 0.0001). It also increased the renal levels of GSH (1:23 +/- 4 vs. 2:23 +/- 2 vs. 3:58 +/- 9 mu mol per gram of protein; p, 0.0001); however, it did not change renal vitamin E (1:24 +/- 5 vs. 2:27 +/- 1 vs. 3:28 +/- 5 mu M per gram of tissue; p < 0.001). In conclusion, carnitine improved oxidative stress and partially improved the nonenzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.
Resumo:
In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm(2), 100 s irradiation per point, 5 J, 1,785 J/cm(2) at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts.
Resumo:
OBJECTIVE: The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients. METHODS: Twenty male chronic obstructive pulmonary disease patients (66.2 +/- 8.3 years old, FEV1: 49.3 +/- 19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864 RESULTS: Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l). CONCLUSIONS: The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.
Resumo:
Background: Equations to predict maximum heart rate (HRmax) in heart failure (HF) patients receiving beta-adrenergic blocking (BB) agents do not consider the cause of HF. We determined equations to predict HRmax in patients with ischemic and nonischemic HF receiving BB therapy. Methods and Results: Using treadmill cardiopulmonary exercise testing, we studied HF patients receiving BB therapy being considered for transplantation from 1999 to 2010. Exclusions were pacemaker and/or implantable defibrillator, left ventricle ejection fraction (LVEF) >50%, peak respiratory exchange ratio (RER) <1.00, and Chagas disease. We used linear regression equations to predict HRmax based on age in ischemic and nonischemic patients. We analyzed 278 patients, aged 47 +/- 10 years, with ischemic (n = 75) and nonischemic (n = 203) HF. LVEF was 30.8 +/- 9.4% and 28.6 +/- 8.2% (P = .04), peak VO2 16.9 +/- 4.7 and 16.9 +/- 5.2 mL kg(-1) min(-1) (P = NS), and the HRmax 130.8 +/- 23.3 and 125.3 +/- 25.3 beats/min (P = .051) in ischemic and nonischemic patients, respectively. We devised the equation HRmax = 168 - 0.76 x age (R-2 = 0.095; P = .007) for ischemic HF patients, but there was no significant relationship between age and HRmax in nonischemic HF patients (R-2 = 0.006; P = NS). Conclusions: Our study suggests that equations to estimate HRmax should consider the cause of HF. (J Cardiac Fail 2012;18:831-836)
Resumo:
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.
Resumo:
Abstract Background Recent reviews have indicated that low level level laser therapy (LLLT) is ineffective in lateral elbow tendinopathy (LET) without assessing validity of treatment procedures and doses or the influence of prior steroid injections. Methods Systematic review with meta-analysis, with primary outcome measures of pain relief and/or global improvement and subgroup analyses of methodological quality, wavelengths and treatment procedures. Results 18 randomised placebo-controlled trials (RCTs) were identified with 13 RCTs (730 patients) meeting the criteria for meta-analysis. 12 RCTs satisfied half or more of the methodological criteria. Publication bias was detected by Egger's graphical test, which showed a negative direction of bias. Ten of the trials included patients with poor prognosis caused by failed steroid injections or other treatment failures, or long symptom duration or severe baseline pain. The weighted mean difference (WMD) for pain relief was 10.2 mm [95% CI: 3.0 to 17.5] and the RR for global improvement was 1.36 [1.16 to 1.60]. Trials which targeted acupuncture points reported negative results, as did trials with wavelengths 820, 830 and 1064 nm. In a subgroup of five trials with 904 nm lasers and one trial with 632 nm wavelength where the lateral elbow tendon insertions were directly irradiated, WMD for pain relief was 17.2 mm [95% CI: 8.5 to 25.9] and 14.0 mm [95% CI: 7.4 to 20.6] respectively, while RR for global pain improvement was only reported for 904 nm at 1.53 [95% CI: 1.28 to 1.83]. LLLT doses in this subgroup ranged between 0.5 and 7.2 Joules. Secondary outcome measures of painfree grip strength, pain pressure threshold, sick leave and follow-up data from 3 to 8 weeks after the end of treatment, showed consistently significant results in favour of the same LLLT subgroup (p < 0.02). No serious side-effects were reported. Conclusion LLLT administered with optimal doses of 904 nm and possibly 632 nm wavelengths directly to the lateral elbow tendon insertions, seem to offer short-term pain relief and less disability in LET, both alone and in conjunction with an exercise regimen. This finding contradicts the conclusions of previous reviews which failed to assess treatment procedures, wavelengths and optimal doses.
Resumo:
Abstract Introduction Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients. Methods Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise). Results The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study. Conclusion A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients. Trial registration NCT01515163.